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Abstract

In many applications, researchers are interested in the direct and indirect causal
effects of an intervention on an outcome of interest. Mediation analysis offers a rig-
orous framework for the identification and estimation of such causal quantities. In
the case of binary treatment, efficient estimators for the direct and indirect effects
are derived by Tchetgen Tchetgen and Shpitser (2012). These estimators are based
on influence functions and possess desirable multiple robustness properties. However,
they are not readily applicable when treatments are continuous, which is the case in
several settings, such as drug dosage in medical applications. In this work, we extend
the influence function-based estimator of Tchetgen Tchetgen and Shpitser (2012) to
deal with continuous treatments by utilizing a kernel smoothing approach. We first
demonstrate that our proposed estimator preserves the multiple robustness property
of the estimator in Tchetgen Tchetgen and Shpitser (2012). Then we show that under
certain mild regularity conditions, our estimator is asymptotically normal. Our esti-
mation scheme allows for high-dimensional nuisance parameters that can be estimated
at slower rates than the target parameter. Additionally, we utilize cross-fitting, which
allows for weaker smoothness requirements for the nuisance functions.

1 Introduction

Estimating the effect of a treatment, policy or intervention is of interest in various fields such
as epidemiology, economics, medicine and sociology. A common estimand is the Average
Causal Effect (ACE), which has been extensively studied in the literature (Hernédn and
Robins, 2020). However, in addition to estimating the treatment effect, one can also be
interested in the pathways and mechanisms through which the treatment affects the outcome
of interest. Causal mediation analysis offers a precise and rigorous mathematical framework
to answer such questions. Causal mediation analysis has been explored in depth in the
literature, see (Robins and Greenland, 1992; Tchetgen Tchetgen and Shpitser, 2012; Pearl,
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2001; VanderWeele, 2009; Goetgeluk et al., 2008; Imai et al., 2010; van der Laan and Petersen,
2008; Lange and Hansen, 2011; Lange et al., 2012).

Much of the literature on mediation analysis assumes binary treatments. However, inter-
ventions involving the dosage of a drug, the duration of an activity, or the frequency of
activity are better described with continuous treatments. In such cases, mediation effects
are naturally described by a multi-dimensional surface rather than a scalar parameter. This
scenario is challenging because it involves learning a multi-dimensional surface without im-
posing a priori shape constraints. Additionally, in the presence of high dimensional nuisance
parameters, the estimator may inherit the slow rates of our nuisance estimators, adversely
affecting inference for the target parameter.

The challenges related to estimating ACE in the continuous treatment setting have been
addressed by (Kennedy et al., 2017; Ai et al., 2021; Hirano and Imbens, 2004; Kreif et al.,
2015; Imbens, 2000; Su et al., 2019; Kallus and Zhou, 2018; Colangelo and Lee, 2020; Hill,
2011). A common method for dealing with continuous treatments involves using Bayesian
Additive Regression Trees (BART) as used by Hill (2011). However, this requires correct
specification of the relevant models, and inherits the rate of the outcome regression estima-
tion. An alternative approach that leverages semiparametric theory involves specifying a
parametric form for the dose response curve, or projecting the true curve onto a parametric
model as presented by (Robins, 2000; Van Der Laan and Robins, 1998; Neugebauer and
van der Laan, 2007). However, these methods may suffer from bias under misspecification
of the dose response curve.

In contrast to approaches involving parametric assumptions on the dose response curve,
flexible approaches to modeling the dose response curve have also been proposed. For exam-
ple, Kennedy et al. (2017) utilize a two-stage estimator that first constructs a doubly robust
pseudo-outcome in the first stage and then regresses the pseudo-outcome on the treatment in
the second-stage using non-parametric regression methods. Colangelo and Lee (2020) utilize
double machine learning along with applying kernel smoothing to the Augmented Inverse
Propensity Weighted (AIPW) score (Robins and Rotnitzky, 1995). This allows for slower
estimation of nuisance parameters while still obtaining fast rates for the target parameter.
However, dealing with continuous treatments in mediation analysis has not been studied to
the same extent.

In this paper we propose a kernel smoothing approach combined with influence function based
estimators (Tsiatis, 2007; Newey, 1994; Bickel et al., 1993; Ichimura and Newey, 2015) to
deal with continuous treatment for causal mediation analysis. We propose an estimator that,
under mild regularity conditions, is consistent, asymptotically linear and well as asymptoti-
cally normal. Our work aims to extend the results for continuous treatment ACE for the case
of mediation analysis involving continuous treatments in the presence of high-dimensional
covariates. (Huber et al., 2020) tackle this problem by weighting the observations by a gen-
eralized propensity score that is given as either the conditional density of treatment given
(1) the covariates or (2) the covariates and the mediator. The authors estimate the general-
ized propensity score either parametrically or non-parametrically, and establish asymptotic



normality. However, this method inherits the rate of estimation of the generalized propen-
sity score, which can be slow. In contrast, we propose an approach motivated by influence
functions and hence obtain many of the desirable properties of influence functions, namely
allowing for slower estimation of nuisance parameters, as well as robustness properties. Our
work draws heavily from the existing causal mediation literature discussing the identification
and estimation of such effects (Pearl, 2001; Imai et al., 2010; Tchetgen Tchetgen and Shpitser,
2012). Additionally, we utilize the double machine learning paradigm from (Chernozhukov
et al., 2018).

The rest of the paper is organized as follows. Section 2 introduces the formal mediation
framework, describes the identifying assumptions, and discusses an influence function based
estimator for binary treatments. Section 3 extends the influence function-based approach
to continuous treatment settings, describing the sample-splitting procedure and smoothing
procedure. In Section 4, we provide our main result, along with the requisite regularity
conditions.

2 Mediation Analysis

Let A be the continuous treatment variable taking values in A, Y be the outcome variable
with values in ), and M be a mediator variable with values in M, which relays parts of the
causal effect of A to Y. Also, let X denote observed pre-treatment covariates in the system
taking values in X'. In order to desribe the causal effect of the treatment on the outcome,
we use the potential outcome framework (Pearl, 2001). Let Y(4=%) be the potential outcome
variable representing the outcome had (contrary to the fact) the treatment is set to value a.
Suppose we are interested in changing the value of the treatment from a to a’. A popular
way to measure the causal effect of this change of treatment is to use the average causal effect
(ACE), which captures the difference in the expected value of the counterfactual outcome
variables, that is

ACE =E[Y@ —y@)],
where E[-] denotes the population-level expectation operator.

The total average causal effect of the treatment on the outcome Y can be partitioned into
the part that is mediated by the variable M, and the rest of the causal effect. To formally
define this partitioning, let Y(»™ denote the potential outcome variable corresponding to
the outcome had the treatment is set to value a and the mediator is set to value m, and M(®
denote the mediator variable had the treatment is set to value a. Pearl (2001) proposed the



following partitioning of the average causal effect into the natural direct and indirect effects:

total effect
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In words, the quantities natural direct effect (NDE) and natural indirect effect (NIE) can
be described as follows. NDE captures the change in the expectation of the outcome if the
value of the treatment variable is switched between the two arms of the experiment, while
the mediator behaves as if the treatment had not changed. NIE captures the change in the
expectation of the outcome if the value of the treatment variable is fixed, while the mediator
behaves as if the treatment had been switched between the two arms of the experiment. In
the following subsection, we discuss estimating NDE and NIE from observational data.

2.1 Estimating Natural Direct and Indirect Effects

In order to estimate the natural direct and indirect effects, from the partitioning in display
(1) it is clear that it suffices to focus on estimating quantities of the form

¢0<a7 a/) — E[Y(G’M<a/))]’

for a,a’ € A. Suppose i.i.d. data from distribution P on variables O = {A, X, M,Y} is
given. In general, the estimand 1y is not identified from observational data and identifica-
tion assumptions are needed to relate the distribution of the observational data to that of
counterfactual variables. We required the following assumptions for the identification

Assumption 1 (Identification Assumptions)

e Consistency. For alla € A and m € M,
Y@ =Y almost surely if A= a and M =m,
M@ = M almost surely if A = a.

e Sequential Exchangeability. For all a,a’ € A,

(Yiem Ay | A X,
ylem | M| A=d, X



e Positivity. For alla € A and m € M,

fujax(m|A, X) >0 almost surely,
faix(alX) >0 almost surely,

where fuyjax and fax are the conditional density of M given A and X, and the
conditional density of A given X, respectively.

Under Assumption 1, the estimand y(a, a’) can be identified using the following expression
called the mediation functional, which was originally proposed in (Pearl, 2001).

vola, a') = /M /XIE[Y|A — a0, M =m, X = al farpax(m|A = d, X = 2) fx(2)du(m, z), (2)

where, fx is the marginal distribution of X, and p is a dominating measure for the distri-
bution of (M, X).

Using the expression (2), one can estimate the parameter of interest ¢y(a,a’) by first esti-
mating the nuisance functions E[Y|A, M, X] and fu4,x, and then using a plug-in estimator
to estimate 1y as follows

R 1 <& . R
0 ad) = -2 / E[Yi|A = a, M = m, Xi] farjax(m|A = d, X;)dp(m).
i=1 Y M

Unfortunately, this estimator is sensitive to bias in the estimation of the nuisance functions,
that is, misspecification of either of the nuisance functions induces bias in the estimation of
the parameter of interest.

As an alternative approach, for the case of binary treatments, i.e., A = {0, 1}, Tchetgen Tch-
etgen and Shpitser (2012) developed a general semiparametric framework for obtaining in-
ferences about the parameter ¢ in the nonparametric model with unrestricted observed data
model. The authors derived the efficient influence function for ¢y (a, a’)

. ](A = CL)fM‘AV)((M’A = CL/,X)

1£4(0) = fax (a|X) fara,x (M|A = a, X)
I(A=d)
fax (/| X)

where a,a’ € {0,1}, I(-) denotes the indicator function, and

(Y —E[Y|A = a, M, X]}

(3)
{EY|A = a, M, X] —n(a,d’, X)} +n(a,d’, X) = tho(a, a’),

n(a,a’, X) :/ ElY|A = a, M =m, X]faujax(m|A =d, X)du(m).
M

Note that IFy, is a function of three nuisance functions E[Y|A, M, X], Imjax, and fax.
Tchetgen Tchetgen and Shpitser (2012) showed that the estimator based on this influence
function has the triple robustness property. That is, it will be consistent even if the model
for one (but not more than one) nuisance function is misspecified. Formally, let
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e M., be the sub-model in which the model for E[Y'|A, M, X] and faa,x are correctly
specified.

e 9M,, be the sub-model in which the model for E[Y|A, M, X] and fax are correctly
specified.

e M,,, be the sub-model in which the model for fy;a,x and fasa,x are correctly specified.

Then the estimator for ¢y based on the influence function I F, is consistent in the submodel

My U Myy U DM

Our goal is to extend the theory of Tchetgen Tchetgen and Shpitser (2012) to the case of
continuous treatment variables. This is the objective in the following section.

3 Continuous Mediation Analysis

In this section we show that identification results closely related to the results of Tchet-
gen Tchetgen and Shpitser (2012) can be established for the case of continuous treatments.
The weights in the moment function (3) contain indicator functions which is a problematic
feature when dealing with continuous treatments. We modify the weights by utilizing kernel
smoothing technique, in which the data with treatment value in a neighborhood defined by
bandwidth parameter h is used for weighting each point.

Let d4 denote the dimension of the treatment variable, and let

da

Ky(a) == h% H k(%)

Jj=1

where k(-) is a kernel function, and h denotes the bandwidth parameter. We propose the
following moment function for estimating vg(a, a’).

ald, M, X)
ala, M, X)
+ Kh(A - CL/)>\(CL/, X){’Y(a’a M7X) - 77(@; alv X)} + 77(@7 a/7 X) - w(av a’),

(4)
where A(a, X) = 1/fax(a|X), a(a, M, X) := fujax(Mla, X), and y(a, M, X) :=E[Y|A =
a, M, X] are the nuisance functions.

m(O;a, N\, v, ¥(a,a")) = Kn(A —a)\(a, X) {Y —~(a, M, X)}

We require the kernel function to satisfy the following conditions.
Assumption 2 (Kernel & Bandwidth Assumptions) the kernel function k(-) satisfies

o [k(u)du=1



[ uk(u)du =

0 < [u?k(u)du < oo

Bounded Differntiable: ’

fK2 )du < oo

Additionally, the kernel bandwidth is assumed to be a function of the sample size n which
satisfies h — 0, nh® — oo and nh?** — C,, for a constant C,, as n goes to infinity.

Note that in the moment function (4), the nuisance parameters are not functions of the
parameter of interest ). Therefore, it gives us the important property that we do not need
to estimate the entire law and having estimators for nuisance functions suffices for obtaining
an estimator for the parameter of interest. That is, given estimations of nuisance functions
Q, 5\, 7, the parameter of interest can be estimated as z[) by solving the following estimating
equation

~

E[m(0; &, A, 4,9 (a, )] = 0.

3.1 Estimation Procedure

We use cross-fitting estimation approach of Chernozhukov et al. (2018) for separating the
estimation of the nuisance functions from the parameter of interest. This approaches pro-
vides us with the benefit that weaker smoothness requirements are needed for the nuisance
functions. In the cross-fitting approach, we partition the samples into L equal size parts
{I,...,I;}. For £ € {1,..., L}, we estimate the nuisance functions dy, M, e on data from all
parts but I,. For all ¢, let 7])( be the estimation of ¢y obtained by solving

Zm Oi; é, Ay 30, Ui(a, @) = 0.

i€y

11|

Our final estimator of vy is obtained by

(5)

Mh

¢TRGG

~
Il

We next show that the proposed estimator preserves the triple robustness property of the
approach of (Tchetgen Tchetgen and Shpitser, 2012) when the treatments are continuous.

Proposition 1 The estimator 1/;TR(a, a’) is consistent in the submodel My, UMy, UMy,



4 Asymptotic Analysis

In this section, we study the asymptotic properties of the cross-fitting estimator in display
(5), and provide pointwise results. We require the following regularity conditions for the
results.

Assumption 3 (Regularity Conditions)

1. For all M and X, the functions f(a | M, X) as a function of a is C?, and the function
and its first and second derivative are bounded.

2. The ground truth nuisance functions a, A,y and their estimations &, S\,ﬁ are bounded.
Additionally, o and its estimation & is bounded away from zero.

9. 112 Farax (Mla, X) fapx (@l X)) (@, M, X)oo < o0

b 1A@) (Zelfanax(M |0, X) fax(a | X)]) [l < o0

5.1 (fanax (M | a, X) fapx(a | X)) [loo < 00

6. HOOTQZ (E[Y | M, a, X]faax(M | a, X)fax(a| X)) l|loo < 00

In addition to the regularity conditions, we require the following conditions regarding the
convergence of the estimators of the nuisance functions.

Assumption 4 (Consistency)
For any values a and a', the estimators Of((“TM;((),)\( X),5(a, M, X), and 7(a,d’, X) are
consistent, that is,

i [ (:\(a,x) - /\(a,x))2 fx(z)dz 20

i [ o (2] e} gy (o, s £ 0

a(a,m,z)
i [y [o (Gla,m, z) — y(a,m, 2))* farx (m, x)dmdz 5 0

w [y (M(a,a,2) —n(a,d,x)?) fx(z)dz o

Assumption 5 (Nuisance Convergence Rates)

For any values a and d', the estimators M Ma, X),4(a, M, X), and fi(a,d’, X) are rate
doubly robust, that s,

N

20

1
, .
o VA (f fo (S - el [V pyp e tmoe)amdn) (f fu (Gaem @) = 2@, )? Far, x (m, 2)dmz)

i Vnhda (fx ([X(a, z) — A(a,x)])2 fX(X)dx>% (fx S Bla,m,z) — y(a, m, N2 far,x (m, ac)dmda:)% )
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[N
[SE

i V/mhdA (.[X ([Aa ) = Ata, 2)]) fX(X)dac) i

(Jx ([i(a,a’,2) = n(a,a’,@)])? fx (2)dx)

Note that we do not require any convergence rates on individual nuisance functions. The
rate double-robustness condition implies that our requirements on the convergence rate is
on the product of the functions. Therefore, if one of the functions converges at a slow rate,
the other functions can compensate for that. This is an desired property when working with
non-parametric estimators that usually have slow convergence rates.

We have the following result regarding the convergence of the cross-fitting estimator.

Theorem 1 Suppose Assumptions 2-4 hold. Then for any value pair a,a’ € A, if var() is
bounded, then

VAl (7 (a, ') — ola, ) \/hd“‘z (050,07, Go(a, @) + 0y(1),

and v/ nhda (@ETR(a, a')—o(a,a’)—B(a,a")) converges to the Gaussian distribution N'(0,V (a,d’)),
with

Bla,d') =h? / w?k(u)du

) E{f(M A=d X) (aa7<X, " a)aaf(a\X, M)  1f(a] X, M)azv(X’ A, a))

f(M|A=a,X) fla]X) 2 fla|X)
LE)Y | X, M, A= d] - na, )}1%}+0(h3),

and

V(a,d) = / k(u)2du x Ey + O(h)

f(M]a,X)? f(a] X)?

where By = E{ f(Mla’ X)* f(alX, M) Lvar(Y|X, M, a) + @O ’IX)

—=var|E(Y|X, M, a)|X, a’]}.

We next extend the result in Theorem 1 to uniformity over a compact interior of the support
of the treatment variable. We require the following stronger version of Assumption 4 for our
result.

Assumption 6 Let Ay be a compact interior of the support of the treatment variable. We
assume that for the supremum of the pair (a,a’) € Ay, the consistency and rate double

robustness conditions in Assumption 4 hold. Moreover, the estimators a((a : ")) ; 5\(a, ), 9(a, -, ),

and N(a,d’,-) are Lipschitz continuous in Ap.



(VB
[N

(L xpn Gilaym, @) = v(a,m, )% far, x (m, ) dmdz )

a(a’,m,x a(a’,m,x 2
R nhA (fxxM ({ ) — a((a,'m,'m))D fM,X(mﬁ)dmd””)
a’,acAg

Ny

[SE
[

i sup  Vnnda (fx([Ma,:c)—A(a,x>})2fx<X>dx) (fx s Gasm, @) = y(aym, 2))% far, x (m, @)dmda) 2 L5 0

a’,a€Ag

£i0

[N
=

[ sup Vnh?A (jX ([S\(a, z) — A(a, z)})Q fx (X)dz)

a’,acAg

(fx ([a(a, a’,2) = n(a,a’,2)])” fx (2)dz)

Theorem 2 Let the conditions in Theorem 1 and Assumption 6 hold. Then the asymptoti-
cally linear representation of in Theorem 1 holds uniformly over Ay.

5 Conclusion

In this paper we put forward a flexible method to estimate mediation effects in the presence
of continuous treatments and high dimensional covariates. We provide results on rate as well
as asymptotic normality to allow for the construction of confidence intervals and hypothesis
tests. Extending the point-wise results to uniform results and providing optimal rates is left
for future work.
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6 Appendix

Before we start with the proofs, we establish some lemmas that will help us with the proofs
in the rest of the appendix.

Lemma 1 Let {X,,} and {Y,,} be a sequence of random variables. Then under conditions
outlined in Lemma 6.1 in Chernozhukov et al. (2018), E[|X,,| | Yin] = 0p(1) tmplies X,,, =

op(1).

Proof: [Proof of Lemma 1]

By the Conditional Markov Inequality, for any € > 0,
E[| Xm| | Y]

€

P Xm| = € Vi) <

By E[| X | Y] = 0,(1), there is p(|X;n| > €| Vi) = 0,(1). An application of Lemma 6.1
then yields p(|X,,| > €) — 0, therefore X,, = 0,(1). O

Lemma 2 Under Assumption 2, we have

/,4 (A — a) f(A)dA = f(a) + CH["(a) + O,(I?).

Proof: [Proof of Lemma 2]

/Jq — o) f(A)dA = /k@ﬁwh+@mL

= /k(u){f(a) +uhf'(a) + u*h*f"(a) + O, (u*h?*) }du
= fla) + CR*f"(a) + Op(h?),

where the last equality follows from the assumptions that [ k(u)du =1, [ k(u)udu = 0, and
[ k(u)udu is constant.

What did we decide to do with the term in red?

6.1 Proof for Theorem 1

We follow a similar outline as Colangelo and Lee (2020) and Chernozhukov et al. (2018). The
proof for this theorem is split into two parts. The first part establishes that the proposed
estimator satisfies

\ h ZZ (Os3 G, Mg, Ae, Yo(a, a')) — (Oi;oa,)\,’y,wg(a,a’))} = 0,(1),

(=1 1iely
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and the second part establishes that vnhda (VTR (a,d’) — 1o(a,a’) — Bla,a’)) converges to
the Gaussian distribution N (0, V (a,d’)).

Starting with the first part of the proof, note that

Vain ZZ{ (O, A3 el ) = m(Oy: 0 X, 7 (e, ')}

(=1 i€l

[ hda PN
ZZ 01705@7)‘577272/12(0’ CL)) (Oi;afa/\éa%;wO(%a/))

(=1 i€l

+ m(OZa dg, >\Za ’AVZ? 1/}0((17 CL/>> - m(Ola &, /\7 e ¢0(a, a’/>>}
= — Vnhia (%@TR( a’) — o(a,a’))

da
L zz m(Oss s Aoy A, ola, ') = m(Os; 0, X, 7, Yofa, @) |

(=1 i€l
Since %25:1 Ziele m(O;; Gy, j\g,’%,@&g(a, a')) =0, we have
vn hdA(iﬁTR( a') —o(a,a’))
i
—y ZZ (O, X7, dola, a) }

/=1 lGI@

da
\/h ZZ (Os3 e, Ao, A vola, @) = m(Os; @, A, 7, (0, @) }.

(=1 iely

In order to establish an asymptotically linear representation for our proposed estimator, it
suffices to to show that for all 1 < ¢ < L we have

da
\| — h Z Oz,Oéz,/\e,W,%(a a )) (Oi;a;)\a%%(aaa/))} = 0y(1).

iely

Next, we expand m(O;; dy, e, e, o(a,a’)) —m(O;; o, N, v, ¢o(a,a’)) into multiple terms and
bound each term individually. Note that
m(Oi: b, A, Ao, o(a, d)) = m(Oy; v, A, v, 9o (a, a))

ala, My, X5) a(d', M;, X;)
AL, Hiy 2a) AL B0 i) oy (e, M, X,

A (e, M., X) ala MZ,XZ){ (a, )}
+ Kp(A; — a’){)\(a X){A(a, My, X;) — ii(a,a’, X3)} — M, Xi){v(a, My, X;) — na,d’, X;)}}
+ ﬁ(aa ala XZ) - 77(@7 a 7XZ)

= Kn(A; — a){\a, X,) {Y; — A(a, My, X;)} — Ma, X;)

To make the notations more concise, with shght abuse of notation, for a given a and d’, we
define )\G(Xl) = )\((Z, Xl)a R(MHX) %7 7a<MlaX> - ’7(@7 MiaXi)7 and 77(X1> =
n(a,d, X;).
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m(O; G, A, A, o (a, @) — m(Os; @, A, 7, doa, ')
= Kn(A; — a){Aa(X)R(M;, X,){Y; = Aa(My, X)} = Ma( X)) R(M;, X){Y; — ~7a(My, X))} }

(6)
+ Ku(As — ) { A (X) {Aa(Mi, Xi) = 0(X0)} = Aar(Xi) {7 (M3, Xi) = 1(X0) }} (7)
+ () = n(Xy) (R1)
Terms (6) and (7) are expanded additionally. Expanding term (6), we get
Kin(A; —a {)\ YR(M;, X){Y; — 3a(M;, X;)} — Mo (X)) R(M;, X){Y; — ~a(M;, X))}

= —Kn(Ai — )(R(M Xi) = R(M;, X3)) (Aa(X3) = Aa(X0)) (Fa(Mi, X;) = 7a( M, X()(%Sl)
+ Kn(Ai — a) (R(M;, X;) = R(M;, X3)) (Fa(M;, X;) = va(M;, X)) (Y = 7a(M;, Xizés |
2
— Kn(A; — a) (R(M;, Xi) = R(M;, X)) (Fa(Mi, Xi) = 7a(Mi, Xi)) Aa(X2) (CS3)
— Kn(A; — a) (Ao(X ) Aa(X3)) (Fa(Mi, Xi) = va (M, X3)) R(M;, X;) (CS4)

+ { Kn(Ai = ) (ROM:, X3) = RO, X)) Aa(X0) (Y = 7(M;, X))
~ E[KA(A; - ><R<M X,) = R(M;, X)) ha(X0) (¥; = 7a(Mi, X)) } (E1)
E[Fu(s — o) (R X0 — RGO XA 7 (M X0)] (TR1)

+ { Ka(Ai = @) (Aa(X3) - %(X»)R(Mi, X0) (Y = 7a(Mi, X))
~ E[K (A — ) (7(X,) —~ M(X0)) RO X)) (¥ — (M, X))} (E2)
+ E[Kh(Az - &) (5‘a<X1) - )\a(Xz))R(Mm Xl) (Y; - ’Va(sz Xl))} (TR2)
— Kin(A; — a) (5a(My, Xi) = va(Mi, X)) Xa(Xi) R(M;, X5). (R2)
For term (7), note that
En(A; — ) { A (X){Fa(M, X;) = 9(X0)} = At (Xi) {7 (M3, X3) — n(X2)}}

= Kn(Ai — d) (A (X0) = A (X0)) (3 (M3, X;) = 7a(M;, X5)) (CS5)
— Kn(A; — ) (A (X)) = A (X0)) (7(X5) = (X)) (Cs6)
+ Kn(Ai — @) (A (X) = Ao (X)) 70 (M, X5) (R3)
+ Kn(Ai = a) (Fa(Mi, Xi) = ya (M, X)) Aar (X5) (R4)
- Kh(Az - CL/) ()‘a (X) - )\a’(X) n<X2> (R5>
— Ki(Ai — o) (1(X3) = n(X3)) Aar (X5). (R6)



Next, we group terms (R1)-(R6) as follows. We pair (R1) with (R6), (R2) with (R4), and
(R3) with (R5). Note that every expectation introduced here is only over O;, conditional on
05, i.e., E(-|Of), and hence all the terms are random variables. For (R1)+(R6) we have

(R1) + (R6)

= (U(Xz) - U(XZ)) - E[U(XZ) - U(Xz)} (E3)
- {Kh(Az —a )(ﬁ(XZ) - n(Xz))/\a (Xi) — E[Kh(Az —ad) (n(Xz> - n(Xz))/\a (Xzﬂ}

(E4)

+E[(7(X) = n(X:)) (1 = Kn(A; — d) e (X0))]. (TR3)

For (R2)4(R4) we have
(R2) + (R4)
= _Kh(Az — CL) (’A)/a(Mia Xz) — ’}/a(Mi, Xz)))\a(Xz)R(Mw Xz)‘f‘
Kh(Ai - a') (%(Mi, Xi) - %(Mi, Xi)))\a’ (Xz)
= — { KA = ) (Mo, X) = 7u(My, X)) Au(X) R(M, X))

— E[Kn(A; — 0)(Fa(M;, Xi) = 7(M;, X)) \(X) R(M;, X)) | (E5)
+ { K (Ai = 0') (Ga(Mi, X2) = 7a(My, X0)) Ar(X0)
— E[Kn(4; — a') (3a (M5, X:) = 7a(Mi, X0)) A (X)) | (E6)
+ E[(3a(M;, Xi) — va(M;, Xi)) { Kn(A; — ')A (X;) — Kn(A; — a) Ao (X)) R(M;, X3) }].
(TR4)

For (R3)+(R5) we have
(R3) + (R5)
= Kn(As = a) (Aar(X3) = M (X)) 7a (M, Xi) = Ki(Ai = @) (A (3) = Aar (X)) m(X5)
= {Kh(Ai — ') (Ao (Xi) = A (X)) (M3, X))

— E[Kn(Ai — ) (A (X3) = Aar (X)) 7a(M;, X3)] } (E7)
= { (A = @) (A (X0) = A (X0))n(X0)

— E[K(4; — @) (A(X0) = A (X)0(X,)] } (E8)
+ E[Ku(A; — ) (A (X3) = Aar (X)) {7a(Mi, Xi) — n(X3) }]. (TR5)
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And so, to prove thA D e, {m(Oi;dz, Aoy A, vo(a, @) — m(Os o, A, v, Yola, a/))} = 0,(1),

we need vVnhd4 times each of the terms (CS1) - (CS6), (E1) - (E8) and (TR1) - (TR5) to
be 0,(1).

6.1.1 Proof for Terms (CS1)-(CS6)

All of these terms contain the product of two or more errors and can be treated similarly.
We provide a detailed proof for (CS2), and a similar method can be followed for the rest of
the terms.

Startlng with (CS2), write A,Lg = Kh(AZ—a) [é(Ml, XJ-R(MH Xz)] [’S/a(MZ, XZ)_’Ya(M’w Xz)} [K—
Ya(M;, X;)]. Following lemma 1, it suffices to bound E {| thA > ier, Diel | Oéc] as o,(1) in

order to show that thA > ier, Die = 0p(1).

First, from the triangle inequality, E H % Y ic 1, Die

| OE} < VahT Y, E [|Ad] | OF],

and so it suffices to bound vVnh%“E |:‘Aig‘

4

VahiaE [\ Ayl

og}
=Vnhia /(9 Kn(A;i — a) [R(M;, X;) — R(M;, X;)] [Fa(Mi, Xi) = va(M;, X3)] [Vi — ’Ya(Mz‘,Xi)]‘

=Vnhda /O F(u) [R(M;, Xi) = R(Mi, X3)] [Aa(Mi, Xi) = va(Mi, Xi)] [Yi = 7a(M;, X))

F(Ys, uh + a, M;, X;)dud Y;dM;dX;
— ki { / k(u)f(uhmwi,xi){ / Vs — va(Ms, X0)] F(Yiluh + a, Mi,xodn} du}
MxX u %

[R(M;, X;) — R(M;i, Xi)] [Ha(My, X;) — va(Mi, Xi)] f(Mi, X;) |dM;d X

(
aits [ L[ | a8, = 200005, 0) ‘k(U)f(uh a0, X |
[R(M.

i Xi) — R(M;, X;)] [Aa(Mi, X;) — va(M;, X5)] ‘f(Mi, X;)dM;dX;

Next, by Assumption 3, Lemma 2 and Assumption 5 (i), the term can be shown to be
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bounded.

—0,(Vnhia) { /u k(u) f(a|MZ-,Xi)+k(u)u20p(h2)du}

1/2
/ [%(Mi,xo—va(Mi,Xiﬂ?f(Mi,X»dMidXi} )
MxX

=0,(1).

6.1.2 Proof for Terms (E1)-(E8)

Terms (E1)-(E8) are normalized terms of the form of a bias times a bounded quantity; they
can all be treated similarly. We only provide the proof of the convergence in probability to
zero for the term (E2).

Assumptions for E1-8:

e Y;’s conditional mean ~y,(m,x), and conditional variance var(Y;|a, m,z) are bounded
over a € Ag for any m € M and v € X

o R(M;, X3), \a(Xi), va(M;, X;), and n(X;) are bounded over oa’,a € Ay, (M;,X;) €
Mx X

e Assumption 4: for all d’,a € Ay,
N 2 P
L[, [)\Q(Xi) - Aa(Xi)} F(X)dX: 50
N 2
2 [on [R(Mi,Xi) _ R(Mi,Xi)] F(M;, X)) dMdX; 2 0
3. [y Ba(Mi, Xi) = 7a(M, X0)]2 (M, X,)dMidX; L5 0
4. [, [n(X;) — U(Xi)]Q f(Xi)dX; 50

Proof for (E2). There are A\,(X;) = A a, X;), R(M;, X;) = %, and v,(M;, X;) =
/Y(aa MZaXz)

Set
B =En(Ai = @) [Aa(X0) = Aa(X0)]| ROM:, X3) 1Y = 7a(My, X)) -

B K — ) [1(X6) = (X)) RO X0 ¥ =08, X0) .
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By construction and independence of Of and O;, i € I, E(A 1g|O@) =0,and E(A ZKAJAOE)
for 7,7 € I, and all d’,a € Ay.

W B (A%|07)
=ttt [ KA =) [3(X) = (X)) B a) ¥ = 200, XL £V Ar, M, KO,
_ / k2 (u) [XQ(XZ-) - Aa(Xi)} CRAd,a) [V — 7a (M, X2 f (Ve uh + a, My, X:)dudVid Msd X
O
:/ / I{JQ(U)JC(U}I + CL|MZ‘, Xz){ / D/% — Va(Miy XZ)]z f(}/Z|Uh + a, Mi, XZ)dYZ}du
MxX y
[a() = A(X)] " R2(d, a) f(M;, X:)dMd X
N 2
SOP(/ kZ(U)du/ |:)\a(Xz) - )\a(Xz>i| R?(CL[, a)f(Ml,Xz)dMldX1>
u MxX

=0,(1)

where the O,(-) statement comes from the boundedness of Y;’s conditional mean ~,(M;, X;)
and conditional variance var(Y;|a,m, z) over a € Ay for any m € M and x € X, and that

[ 5= M X0 (Vi -+ 0, M XY,

Yy

:/ (Y72 + 72 (M, X;) — 270 (M;, Xo)Yi] f(Yiluh + a, M;, X;)dY;
Yy

=E[Y?|uh + a, M;, X;] + 73 (M;, X;) — 27.(M;, X;) / Yif (Yiluh 4 a, M;, X;)dY;
Y

=E[Y;*|uh + a, M;, X;] + 72 (M;, X;) — 29a(Mi, X;) — 290 (M;, Xi)Vunta(M;, X;)
_0,(1).

The 0,(1) rate is from assuming R(M;, X;) is bounded over d’,a € Ay and assumption 4(i)
that )
[ Pt = 2a0)] s0xax; S
x

Then

[V Y3 A

=1 i€l

og} _hdA/nZZEA |05) = h4E(A2]05) = 0,(1).

(=1 i€l

This leads to y/ha /n S, > e, Au 50, e (E2) being 0,(1/vnhda).
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6.1.3 Proof for Terms (TR1)-(TRS5)

The proofs of the convergence in probability to zero for the terms (TR1)-(TR5) require
extra considerations, and we prove them on a case by case basis below. Since these terms
are already in expectation form, we don’t need to invoke Lemma 1 here.

Proof for Terms TR1 and TR2

Terms (TR1) and (TR2) are similar; we only provide the proof of the convergence in prob-
ability to zero for the term (TR2).

To bound TR2, first let Ay = Kj,(4; — a [ a(Xi) = Aa(Xi) | R(M;, X;) [Yi — v (M, X5)].
Bounding (TR2) amounts to showing vnhdaE(Ay) = o0,(1).

OE)

:\/nhdAIE{Kh(AZ- —a) [S\Q(X,-) - M}g)} R(OM;, X)) [Y; — 7a(Mi, X;)]

VnhisE (AM

OE}

=Vl [ Ky =) [3(X) = A X0] RO X V; = 505, X)) £V Ar M3, X)dO;

=V nhda {/ Kn(A; —a)f(A; | Y“MZ,XJ} [S\G(Xz) — )\a(Xi)}
MxXX XY A
R(M;, X;) [Yi — va(My, X5)] f(Ye, My, X3)dY;dM;d X;

Applying Lemma 2 under Assumption 3.2

=Vnhia fla| Y, My, X;) + C*R2f"(a | M, X;) 4+ O,(h*)]
M><X><y

3a(X0) = Aa(X0)| ROM:, X5) Vi = 30(My, X)) F(Vi, My, X)dYidMid X

@ V/nhda [C2R2f"(a | My, X;) + Op(h?)] [Mxi) . )\a(Xi)]
MxX XY
R(M’i7 Xz’) [Yz‘ - ’Va(Mzw X@)] f(Yi; M;, Xi)indMidXz'

—V/nhia - [C2R2 f"(a | My, X;) + Op(h?)] [ia(Xi)—Aa(Xiﬂ

R(M, X)) [ /y YiA(Y; | M, X,)dY, %<Mi,xi>] F (M, X)AMdX,

=0p(1)

The last equality follows from Assumption 2 (nhdA+4A—> Ch, h — 0), the boundedness
of f"(a | M;,X;) and R(M;,X;), the consistency of \,(X;) in Assumption 4.1, and the
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boundedness of fy Y. f(Y: | M;, X;)dY; from that
/Yif(yz‘ | M, X;)dY;
y
:/ / Yif(Yi | a, My, X;)dY; f(a| M;, X;)da
AJY
:/ ’Ya(MzaXz)f(alMqu)da < 0.
A

Equality (a) follows from that

Vil (| i, My, X3) [Aal(X0) = Xal(X0)| RO, X)Yif (Vi My, X)dYidMid X,
M><X><)J
Vb 0= 2] RO )| [ ViF (04 0, Mi X0 a0 M X0
M><X y
—Vnhta ) = Aa(X0)| ROM:, X0)9a(Mi, X;) f(a, M, X)AM;dX;
M><X
—Vnhda Aa(3X5) = A(X0)| ROV, X900, X5) f(a, Vi, M, Xp)dYdMid X,
M><X><)J
Vnhda CL | Yi, Mz,X) [S\a(Xz) - )\a(Xi) R(Mz‘aXz')%(Mi;Xi)f(Yz‘; Mz‘aXz')de‘sz'dXi
MxXxY

Proof for TR3
For Term (TR3), we have

VihaB[(7(X;) — n(X:)) (1 — Kn(A; — @) (X,))|Of]
= s | 09— (1 KA a’)Aa«Xi))f(Ai, X)dAdX,
= Vit [ (G060 =) (1= { [ A @) (A X)AAIN)) P,
it | 05 = n0X0) (1= S| XA (K0) F(X X,
Vs [ 05 < 0O | X (XS (X)X
- Vaid [ (05 = (X)) O (X [,

= 0,(1).

where (a) follows from Lemma 2, for the inequality we used boundedness of f”(a|X) for all
a € Ay, and the last equality follows form boundedness of the nuisance functions and that
nh®4*4 — €y, and Assumption 4(iv) (consistency of H(X;)).
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Proof For TR4

The following Assumptions are utilized for the proof

o nhiats Ch
o [[Aa(Xi)f"(a" | M, X)|oo < 00

e Consistency of nuisance estimation

Now, demonstrating the bound for (TR4).

E[(5a(Mi, X;) — va(M;, Xi)) { Kn(Ai — a") A (Xi) — Kp(Ai — a)Xa(X;)R(M;, X;) }]
=E[(Ja(M;, X;i) — 7a(M;i, X3)) { Kn(Ai — ')At (Xi) }] — E[(Fa(Mi, X3) — va(Mi, X)) { K1 (A; — a)Aa(X3)R(M;, X

Simplifying the above terms one at a time
7a<MzaX> 7a(MmX ){Kh )Aa’(Xz>}}
/ / Su(My X0) — 7a(My, X)) A (X)) {/ K(Ai — ') f(A| M,X)da} F(M, X)dmda
A

From Lemma 2, [, Kn(A; — a')f(A | M, X)da can be rewritten as [, = f(a’' | M, X) +
CR2f"(a | M, X) 1 0,(h®)
Plugging back into original integral gives:
[ GulMi X = 2008, X0) A (XD | M. X) SO, X
xJ M
10 [ [ M X0) = (M X)) M50 | LX) X

0, (h?) / / oMy, X,) = 7a(Mi, X)) A (X) F(M, X )dimdn

Applying a similar approach to the second term, we get

- /X /M (Fa(M;, X3) — Ya(M;, Xi)) A (X)) R(M;, X3) f(a | M, X) f(M, X)dmda
—hQC/ / &a(Mia Xz) — ’YQ(MZ,XZ)>AG(XZ)R(MZ,XZ)JC”(CL | M, X)f(M,X)ddeL‘

0,0%) | / oMy, X,) = 1My, X)) Na(X0) ROM;, X) (M, X )dmd
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Claim:

/ /M (Fa(M;, X;) — va(My, X)) {Xar (Xo) f (@’ | M, X) — Xa(X3)R(M;, X5) f(a | M, X)} f(M, X)dmdz =0

Proof:

f(X) fla', M, X)
fla, X)) f(M, X)

Ao (Xi) fa' | M, X) =

Similarly

F(X) fOM.d\X) f(a,X) fla,M,X)
FaX) fl@,X) FOM,aX) f(MX)
_JX) J(Md,X)

F(@,X) (M, X)

Aa(Xs)R(M;, Xi) f(a | M, X) =

And so they cancel out. To bound the remaining terms, we follow a similar argument
demonstrated below

Vnhdah2C // o( My, Xi) = 7a(Mi, X)) A (X3) £ (@ | M, X) f(M, X )dmdz
NoyTreEte / / o(M, X,) = 7a(Mi, X)) A (X0) £ (a | M, X) f(M, X)dmdz

By assumption, nh?** — (). Applying Holder inequality to the integral with p = 1 and
q =00

<Wc{ [ [ 1nx) - %(Mi,Xi))If(M,X)dmdw}HAaf(Xz-)f”(a’IMX)Hoo

Since we assume the oo-norm is bounded, the above becomes
hdA+4C'// {/ / MZ7X /}/a(M“XZ))|f<M,X)dmdx}

Now, an application of Cauchy-Schwartz gives

<\/WC”{// (M, X)) — %(Mi,Xi))Qf(M,X)dmdx}é{/X/Mf(M,X)dmdx}%

By the consistency assumption on our nuisance estimators and Slutskys theorem, the above
term can be shown to be o0,(1).

Proof For TR5
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Finally, for term (TR5), we note that
VnhBaE [ Ky (A — a) (A (X)) — A (X0)) {70 (M, X;) — 0(X,) }OF]
= Vnhda EKn(Ai — a) ar (X)) = e (X)) {7 (M3, X,) — (X))} £(As, My, X,)dAidM;d X,
X, M, A
=V nhd"‘/ {/ Kn(A; —d') f(A; | M, X;)dA;}
X M A
X (Aar(X) = A (X)) {7a (M, X3) — (X))} (M, X,)dMid X,
@ /nhda /X y (Mot (X)) = Aot (X)) {7a(Mi, X3) — (X)) f (!, M3, X,)dMid X,
+ Vnhia /XM (;\a’(Xi) — A (X0)) {7a(M;, X;) = n(X;) JOR? £ (a' | My, X;) f (M, X;)dM;d X,

+ Vnhda /XM (A (X0) = A (X)) {7 (M3, X3) = n(X0) JO(B?) f (M, X3)dMid X
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Next, for bias B(a,a’) and variance V' (a,a’), given

VAl (575 . ')~ vola.)
S S (00 A ol + 1)

=1 i€l

and

Kh(Al — Cl)f(Ml ‘ A = CL,,XZ')
f(M; | A=a,X;)f(a] X;)
+ M{E[Y | Xiy M;, A=a] —n(a,d, X;)} +n(a,d, X;) — ola,a’)
f(a// ’ X,L) ? 9 ? ? ? Y 3

m(O’M «, >\7 e 7#0(@, CL,)) =

we focus on

Kpn(A—a)f(M | A=d, X)
fIM[A=a,X)f(a]X)

Kh(A — CL/)
fla' [ X)

where n(a,d’, X) = [E}Y | X,M = m,A = a]f(m | A =d,X)dmn = E{E[Y | X, A =
al|A=d, X}.

{E[Y | X, M, A =a]l-n(a,d, X)},

{Y-E[Y | X, M, A =al}+

Expectation Part 1

Kp(A—a)f(M | A=d, X)
fIM | A=aX)f(a]X)

{Y —E[Y | X,M,A = a]}

From E{E[y(X, M, A)| X, M|} = E{E[Y|X, M|} and v(X, M, A) = E(Y|X, M, A), expecta-
tion of the first term
E[Kh(A —a)f(M | A=d,X)
f(M]A=a,X)f(a]X)

B Kp(A—a)f(M|A=d,X) .
‘E{E{ FOITA=aX)fax) O P IRALA=d}

{Y —E[Y | X,M,A:a]}}

o)

_ fIM]A=d X) —a — a
—E{ LA B[R4 — )X, M, 4) = (X, M)

oo}
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The inner product further expands as follows,

E [Khm ) (4(X, M, A) — (X, M, a))

X, M}

_ /A Ka(A — a)(7(X, M, A) = 3(X, M, a)) f(A]X, M)dA

:/A [f[l %k(Ajh_ “)} (1(X, M, A) — ~(X, M, a)) f(A| X, M)dA

:/k(u)(w(X, M, a+ uh) —~v(X,M,a))f(a+ uh|X, M)du

a4 u?h?
:/kz(ul)---k(udA)<Zujh8aj7(X, M, a)+ 12

J=1

92 (X, M, a))

a4 u?h?
X (f(a|X, M) + Z ujhaajf(a|X, M) + ]Tagjf((ﬂX, M)) duy - - - du’dA + O(h3)

Jj=1

=h? /u%(u)du(zaajfy()(, M, a)0,, f(a| X, M) + %[8@7()(, M, a)]f(a|X, M)) +O(h?)

j=1

for all X, M in respective range.

f(M]A=d, X) iy B )
E{f(M|A:a,X)f(a|X)E[Kh(A )(v(X, M, A) — 4(X, M, a))

X, M] }
2 / W2h(u)du

f(M’A:a/>X) 8af(a"X7M) 1f(a‘X7M> 2 3
XE{f(M!A—a,X) (8”“’]”"” falX) "2 falx) 8”(X’M’“)>}+O(“

Expectation Part 2

Kh(A - (1/)

@ %) {E[Y | X, M, A =a] —n(a,d,X)}
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E{K“A — ) (E[Y | X, M, A =d] — nla, a’,X)}]

fla | X)
:]E{IE V;?(j'_ a)/) (E[Y | X, M, A= a] —n(a,d, X)}’X, M] }
_]E{ f(a,1| X)]E[Kh(A ~WEY | X, M, A = a] — n(a, a’,X)}'X, M} }
:E{E[Y | X, M’f’?a/j C;]Q_ a9 X) e (A — o) X, M]}
The inner expectation becomes
E[Kh(A —d)|X, M]

:/A {ﬁ%k(Aj;alﬂf(AlX, M)dA

da 3
:/k(ul) : --k(udA)<f(a’|X, M)+ 3" ujhda, f(d| X, M) + UJQ

J=1

(93jf(a’|X, M)) duy - - - dug, + O(h?)
1 2
=f(d|X, M) + §h2 /u%(u)du; 82jf(a'|X, M) + O(h*)

The expectation of part 2

1 /
E{W{E[Y | X, M, A =a]—n(a,d,X)}

X (f(a'|X, M) + %hg/u2k(u)du3§f(a'|X, M))} + O(R?)
:E{{E[Y | X, M, A=a]—n(a,d,X)}

fl@|X, M) 1, 2k uagf(a’]X,M) 3
<(Fpn + 30 [ s =G5S )}*O(h )

=h2/u2k(u)duE{{E[Y | X, M, A = a] —n(a, a’,X)}%%} + O(h%)
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from having the first term in this expectation equal to zero,

fld']X, M)
fa'|X)

://{E[Y | X, M, A =al]— n(a,a’,X)}fSi;jl;,X;\)/[)

://{E[Y | X, M, A=a]—n(a,d, X)}f(M|A=d,X)dMf(X)dX

_ / /{E[Y | X, M, A= a] —n(a,d, X))} F(M, X)dMdX

F(X)dMdX

_ / {1(a,d', X) — n(a,d’, X)} F(X)dX =0

Hence,
B(a,d') =

h2/u2k(u)du

fIM]A=d X) Oof(a|X, M)  1f(a]|X, M)
E{ = (e M T
Pfd|X, M

+{E[Y | X, M, A =a] —nl(a, a',X)}%%} + O(Rh?)

Variance

JA Kpn(A—a)f(M | A=d, X) B .
' { FTA=a )i x) B IRAL A=

Kh(A — CL,)
MNCAES

+77(a,a’,X)—90}

{E[Y | X, M, A =a] —n(a,d,X)}

28
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To start with, we look at the second order expectation

KyA-a)f(M|A=d, X)), .
E{[ FOITA =a X)f(a] X) {Y —E[Y | X, M, A =ad]}
Kn(A—ad)

fla ] X)

KA —a)f(M|A=d,X) ., _ .l
‘E{[ FOITA=aX)fa]x) O F XA ”]}

+

{E[Y | X, M, A = d] —n(a,a’,X)}] }

Kh(A—a/) —al = nla.d :
+E{[ e T Y 10,4 e, )| }

+2E{{Kh(A—&)f(M|A:a/’X){y_E[Y|X,M,A=a]}}

JIM|A=a,X)f(a|X)

{Kh(A—a’)

@ X) {E[Y | X, M, A = q] —n(a,a',X)}}}

29



Variance Part 1

. {Km —a)f(M | A=d,X)
JOITA=a.X)f(a] X)

(Y —E[Y | X,M,A= a]}r}

_E E{ {Khm —a)f(M|A=d,X)

FOI[A=a,X)fla]x) O ~EVIXAMA= “”’}

o)
o)

o] fOr A= Xy
FOM | A=a X2 f(a] XP

]E{Kh(A —a)* (Y —E[Y | X, M, A = a])?

f(M|A=d X)

T A= a X2/ (a | X)2

x B Kp(A—a)’E{(Y —E[Y | X, M, A = a])*|X, M, A}‘X, M}}

o) fOA=d Xy
LA =0, X2 f(a] X)?

x E{ Kp(A —a)? {var(Y!X, M, A) + (X, M, A)? —2v(X, M, A)y(X, M, a) +~(X, M, a)Q}

)

o] fOrA=a Xy
FOM | A=a X2 f(a] XP

X ]E{Kh(A —a)? {var(Y!X, M, A) + (v(X, M, A) —v(X, M, a))z]

)
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The inner expectation

E{Kh(A —a)? [var(Y|X, M, A)+ (v(X, M, A) —~(X, M, a))2]

X,M}

:/ [ﬁ%k(Aj - “)2] [Uar(Y|X, M, A) + (v(X, M, A) — (X, M, a))z}f(/HX, M)dA

h
:%/k(lﬁ

X {var(Y|X, M,a+uh) + (v(X, M,a+ uh) — (X, M, a))ﬂ fla+uh|X, M)du

iy [ R b,

da u?h?
X [var(Y|X, M, a) + Zujhﬁajvar(ﬂX, M, a) + 32 02jvar(Y|X, M, a) + O(h?)

j=1

ush

da 27,2 2
(S wht (X, 000) + 202 (M) + 00 ) |

=1
a4 u?h?
« (f(a\X, M)+ wghd, F(alX, M) + “L32 f(alX, M) +O(h3))du1...dudA

Jj=1

1

:MTA{ /k(u)zdu x var(Y|X, M, a)f(a|X, M)

+h2/u2k(u)2du
« { Bagmmx, M.a) + (90 (X, M, a>>2] J(al X, M) + Byvar(Y|X, M, )0, f (a| X, M)

+ %var(Y|X, M, a)0?f(a|X, M)} + O(h4)}
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Hence, the part 1 of variance

(A= a)f(M |, X) at
E{[ FOT a0 3 O B XM }

gl s Xy
O Ta, X7 f(a] X2

X [h%/k(ufdu x var(Y|X, M,a)f(a| X, M)
+ h2da /qu:(u)2du X ([%821)&7‘(Y|X, M,a) + (0,v(X, M, a))Q]f(a|X, M)
+ Oyvar(Y|X, M,a)d, f(a| X, M) + %var(Y|X, M,a)d f(a| X, M))

_ 1 w)?du (M | &, X)"[(a] X, M)var a
=7z | K E{ PO Ta, X f(a] xp A >}

} + O(h*~4)

+ b / h(u)u’du x E{ f%f’ | iiéf}i‘fx? [S02var(VIX, M, a) + (21(X, M, 0))?

L SO ]a X
FOM T a, X2 (a ] X)?

+ O(h17%4)

[Oavar(Y|X, M,a)0,f(alX, M)+ %U@T(Y|X, M,a) f(a| X, M)} }

Variance Part 2

E{ {Kh( —d) (]E(Y | X, M, A=a)— n(a,a',X))r}

fla ] X)

2

)

:E{WE {Kh(A —ad)? (7(X, M, a) —n(a,d, X))
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The inner expectation

E[Kh(A — a’)2<7(X, M,a) — n(a,a',X))ZIX}

S

“ 2} (+(X.M.0) — nla.a'. X)) F(AIX)F(M|A, X)dAdM

/ 2 !/ /
- // 3(X, M, a) —nfa,a, X)) (@’ +uh|X)f(M]a’ + uh, X)dudD
hdA// uy)? - k(ug,)? (XMa) n(a,a',X)>2
21,2
< (1t )+ 3 wh ax) + 02 f(a|X) + O(h?))
=1
da 21,2
X (f(M|a',X)+Zujhaajf(M|a',X)+ I 83jf(M|a’,X)+O(h3)>du1---dudAdM

j=1
:h% k(u)2du x var[E(Y|X, M, a)| X, a']f (| X)
+ 24 /k(u)2u2du X {%var[E(Y|X, M, a)|X,d02f(d'|X)
/ 2 1 / / / /
+ [ (060 = 00,0 X)) x [FHEI0FHMIX, ) + 0, (@1 X)0,F (M| X, a >}dM}
+ O(h17%)
the last equation is from

2
var[E(Y|X, M, a)| X, d] E{ (Y|X, M, a) - n(a, a',X)] X, a’}

/ (Y|X, M, a) — (a,a’,X)rf(M|X,a’)dM.
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Hence, the part 2 of variance

E{WI@ {Kh(A —ad)? (V(X’ M, a) — n(a,a’,X))TX} }

1 2
y k(u)*du x ]E{

e var[E(Y|X, M, a)| X, a’]}

1

F(@IX)

e [ paean s ge{ B vor 51 01,0
[+

+ p27da w)uldux

CoN? [ RFOMIX.) | 0] X)0f(M]X, )
E{WX’M’“)‘”(“’“’X)) ST IR A~ Fa R X A ”

+ O(h17%4)

Variance Part 3
. [Kh<A—a>f<M|A=a',X>
(MTA=a,X)f(a] X)
K —a') o /
" h T {]E[Y\X,M,A_a]—n(a,a,X)}}}

[ K(A— )Ku(A— ) F(M]a',X) |
_E{ hf(al X)f(@X) (M, X) [Y_V(KM"L)][V(X’Mﬂ)—n(a;a,X)]}

{Y —E[Y | X,M,A:a]}}

e 1 F(M|d', X)
falX) f(@'|X) f(M]a, X)

[W(X, M,a) —n(a,d, X)]

X E{Kh(A — a)Kn(A—d) [Y (X, M, a)} ’X, M}}

k { L fMX)

AR @R fila ) [T M) = e X))

x E{Kh(A — @) Kn(A - d) [V(X, M, A) — y(X, M, a)]

X,M}}
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The inner expectation

E{Kh(A —a)Kn(A—d) [V(X, M, A) — ~(X, M, a)] ‘X, M}

dg

:/ Lﬁ%k(&;“)k(‘%;a,)] [, M, 4) = 7(X, M, )] £(A]X, M)dA

1 a—a a—a

= [ )+ blua G+ S )b+ )
da 272 37,3

X [ E u;h0,,v(X, M, a) + ]2 82]_7(X, M, a) + JTa?’ﬂ(X, M,a) + O(h4)]

j=1
a4 u?h?
X [f(a\x, M)+ ush, f(al X, M) + =02 f(al X, M) +0(h3)}du1-.-dudA

=p!—da / k(u)k(u fl

+ h? / k(u)k(u +

a—ad

Judu x f(alX, M)3,A(X, M, a)

a—a

Jutdu x % F(@lX, M)O2y(X, M, @) + 8, f(al X, M)DA(X, M, )|

a—a

+ p3d4 /k(u)k(u—i— Juldux

[ 70]X, M)O(X, M, a) + 50 (al X, M)OZ(X, M, a) + 502 (al X, M)O (X, M, a)|

+ O(h*~%4)
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Hence, the part 3 of variance

. 1 f(Md, X)
falX)f(a'|X) f(M]a, X)

[7(X, M, a) — n(a,a/,X)}

X E{Kh(A — Q) Kn(A — d) [7(X, M, A) — (X, M, a)}

X, M}}
" | F(Md, X)
fa|lX) f(a'|X) f(M]a, X)

[hl—dA /k(u)k(u+ ¢ ;La/)udu X f(a| X, M)0,v(X, M, a)

a—a

h

[7(X, M, a) — n(a,a',X)} X

+ 2 / (- C S yudu x [ £l X, M)3(X, M, a) + 0, f(al X, M)y (X, M, a)]

/

i Juldux

+h3_dA/k(u)l<:(u+ p

(2 401X, MG (X, M, @) + 30,0l X, M)GE(X, M, @) + 202 (0] X, M)Dur (X, M, a)H }
+ O(h17%)
=plda / k(u)k(u +

a;a/)udu y E{f(a’|M,X)

fla']X)?

[W(X, M,a) —n(a,d, X)] 0uy(X, M, a)}

a — /

ha Yuldu

X E{fﬁl,jgé)f) [V(X, M, a) — n(a,aﬂX)} [%337()(7 M, a) + Ouf(

+ hPda / k(u)k(u +

+ h? / k(u)k(u +

a|X,M)8a7(X,M,a)]}

f(a|M, X)

fd'[M, X) /

X2 [v(X, M,a) —n(a,a,X)]

Ouf(a| X, M)OZy(X, M,a) 07 f(a|X, M)0.y(X, M, a)} }
2f(a|M, X) 2f(a|M, X)

Al
u)u?’alu X ]E{

1
X [6827()(, M,a) +

+ O(h*~%4)
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Summarizing the three parts, the variance can be written as

1
V(a,a') =h™ x {hTA/k(u)Qdu x F) + h?da /k(u)2u2du X Ey

+ plda /k(u)k(u + 2= a/)udu x B3+ h* /k(u)k(u + 4= a/)u2du x E,
+ hPda / F(u)k(u + — “/)uf”du x Es + O(h‘*‘d*‘)}

= / k(u)*du x By + h? / k(u)*u*du x Fy
+ h/k(u)k(u +2° a,)udu x B3 + h? / k(u)k(u+ a4 ;L a,)u2du X By

a—a

+ h3/k(u)k(u + ; Juldu x Es + O(h*)

where

o T | X2 (ol X, M)
= ‘E{ JOM [0, X)2f(a ] X)?

o T | X2 (el X M)

= ‘E{ JO [0, X)2f(a ] X)?
L S X

FOM | @ X f(a] X7

92 f(a|X)

2 (@]X)?

var(Y|X, M,a) + mvar[E(Y]X, M,a)|X, a']}

[%83@@7’(}/\)(, M, a) + (0,v(X, M, a))ﬂ

[ﬁava'r(Y\X, M,a)0,f(a|X, M) + %var(Y|X, M, a)d?f(al X, M)]

var[E(Y|X, M, a)| X, d]

+ (7(X> M, &) _n(a,a/,X)>2 x [2f<

BIMX) 0] XN0f MV, ')
XOFOIXA) " FWIX0 (MIX, 4)

E3 :E{M _7(X7 M, CL) - n(a?a/aX) 8a’}/(X, M, (I)}

Ey :E{—f O [y 0.0) e, X)) [ 302X, M) 4 QT MO M ) }

f(alM,; X)

e[ SV X) | N
E5 —E{ f(a’|X)2 _7(X7M7 ) 77<’ 7X)

1
X [6827()(’ M, (l) +

Ouf(a|X, M)D2y(X, M,a) = 2 f(a|X, M)0uy(X, M, a)
2f(alM, X) 2f(alM, X) }}

Hence, as h — 0, the asymptotic variance V'(a,a’) converges to [ k(u)?du x E;.
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Normality

Write I Fy, = m(Oy; a, N\, v, 1o(a,d’)), raw moments as p, = E(IF}), and central moments as
Wy = E{([Fk - IE(IFk))l} Note that IF}, is also a function of h. For normality, we want to

show that [F}, satisfies the Lyapunov’s condition for some d > 0,

n (2+9)/2 n

{ 3 var(]Fk)} S E HIFk _E(IF)

k=1 k=1

2+6
}—>0

Previous derivation shows that E(IF}) = p; = O(h?) and var(IFy) = pb = O(hdA) From

1
standard algebra, we can show that pj, = { (IF, —E(IF,))! } = O(w—lw) and taking 0 to

be an even number,

]EHIFk _E(IF) M] - ]E[(IFk - E([Fk)>2+6] - O(ﬁ).

Hence,
n (2+9)/2 n 218
{ var(]Fk)} ZEHIFk _E(IF) }
k=1 k=1
~(246)/2
1 1
:{”O (57) } "0 (s

1
:0(—> = o(1).
(nht)?
Thus, the Lyapunov’s condition is satisfied and by CLT,

ZZ:I IFk — N * E(]Fk)
n * var(lFy,)

~ N(0,1) as n — oo.

Therefore, vVnhda ($TR(a,a') — vo(a, ') — Bla,d’)) ~ N(0,V(a,d’)) as n — .
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6.2 Proof for Uniform Convergence

R1-1/R1-2 type terms: 2,3,7,9,10,12,13,14; R2 type terms: 1,4,5,6,8,11

e kernel k(+) is bounded

o  sup Vnhda(fy, \(Aa' maz)—Na;m,@))? f(m,a’ @)dmdz) 2 ([, o (Glam,z)—y(am,x))? f(m,a,z)dmdz)'/2 50
a’,a€Aq

e There exist Ay, — 0,45, — 0, and A3, — 0 such that

sup Yi(a, My, X;) — ~(a, M;, X;)| = Op(Arn),
A€ Ao, (M;, X1)EMXX

sup |;\l(a, M;, X;) — Ma, M;, X;)| = O,(Asy,)
ac€Ao,(M;, X;)EMxX

and
sup \Ry(d',a, My, X;) — R(d',a, My, X;)| = O,(Asy,)
a,a’€Ag,(M;,X;)EMXX

where Ry(a’,a,m,x) = a(d’,m,z)/a(a,m, ).

e y(a,m,z) and j\l(a,m,x) are Lipschitz continuous in a € Ay, for any m € M and
reX.

Focus on term (CS5) in Theorem 1’s proof,

@Z {Kh(Az- —d) [Nd, M;, X;) — Md', M;, XZ-)] [5(a, M;, X;) — ~(a, M;, Xi)]} (8)

il

and show that it is o,(1) uniformly over (a,a’) € A,. Write AL(X;) and 4} (M;, X;) as
the nuisance estimators that use Of for estimation and applied on subject ¢ where i € O,.
Corresponding to the term under consideration, we define

Aié(% a) = [;\e(a/, Mz’yXi) - )‘(a’/7 Mi7Xi)] [%(C% M;, Xi) - 7(6% M;, Xz)] )
L

g(a',a) =n~t Z Z Ku(A; — d')Ay(d’,a), and

=1 i€l,

Wi(d',a) = Kp(A; —a')Ay(d',a) — E[KL(A; — a')Aw(d,a)].

Lemma 3 (Supremum of g) sup E[g§(d’,a)] = 0,(1/1/(nhds))

a’,a€Ap
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Proof:
VnhiaE[g(d',a)] = VnhiaE[K,(A; — a')Au(d, a)]

=V/nhda Kn(A; — d)YOo(d, My, X;) — Md', M;, X))
XXMxA

(’7@(@7 M;, Xi) - ’V(aa M;, Xi))f(Aia M;, Xi>dXidMidAi

=V/nhda [f (| M;, X;) + O (W) (A(d!, M, X;) — Md', M;, X;))
X xM
(Y(a, My, X5) — y(a, M;, X;)) f(M;, X;)dX;dM;

R 1/2
SOP{ V nhdA (/ ()\(CL/, Mi7 Xz) — )\(CL/, Mi7 Xl))2f(MZ, XZ)dMZdXZ)
X

XM

1/2
(/ @(aa M;, Xi) - 7(0, M;, Xi))2f(Mi7Xi)dMidXi) }
XxM

20

holds uniformly over a’,a € Ay by Assumption 6. The last inequality is obtained from
Cauchy-Schwartz inequality and Assumption 5. Hence,

sup Vnh®E[g(d',a)] =0, (1) = sup E[g(d,a)] = o, (1/\/nhdA>

a’,aeAg a’,a€Ag

O

Lemma 4 For any € > 0, there ezists a positive constant C' such that P(B,(C)) > 1—¢ for
n large enough, where B,(C) = NE B, (C) and

Bin(C) = {3, \e: sup  |Aila, My, X;) — y(a, My, X;)| < C Ay,
a€Ap,i€ly

sup |/\l(a, Mqu) — )\(@7 Mi, Xz)| S CAQn}

a€Apg,i€1y

Proof: By Assumption 6 and the definition of O,, for any € > 0, there exists C' > 0 such

that
P( sup |Yi(a, M;, X;) —~(a, M;, X;)| > CAy,) < €/(2L) and
QE.AO,(Mi,Xi)EMXX
P( sup \Ni(a, My, X;) — Ma, M, X;)| > CAg,) < €/(2L)

a€Ag,(M;, X;) EMXX

40



for n large enough. Because

1— P(Bln(c)) :P( sup H/l(aa Mia XZ) - W(Ga Mia X’L)| > CAlna

a€Ap, i€y
sup | N(a, M;, Xi) — Ma, M, X;)| > CAsy)
a€Ag,icly
SP( sup H/l(&a Mi7 Xl) - 7(&7 Mia XZ)' > CAln)a
a€Ag,(M;, X;)EMxX

sup |X[(CL, ]\41‘7 Xz) — )\(CL, MZ‘, Xz>| > CAQn)
aE.Ao,(Mi,Xi)GMXX

<e/L,
there is P(B,,(C)) > 1 —¢/L. As a result,
B.(C)) = P(Mi21B1(C))

P
L

> P(B(C))—L+1>L—-Lxe/L-L+1=1-¢
=1

O
Lemma 5 Given n, > 0 and By, defined in lemma 4, the following equality holds
P(n™'Wi(d',a) > 1, Bin(C)) = E[P(n™ ' Wi(a', a) > 1, | OF)L(B1(C))]
Proof:
P(n™'Wi(d',a) > 1y, Bin(C)) = P(n™' Wie(a',a) >y, | Bin(C))P(Bia(C))
= P(n~'Wil(d',a) > . | OF) P(Bin(C))
= E[P(n™'Wi(d',a) > n, | O9)I(Bi(0))]
O

Lemma 6 Given n, > 0, for any positive sequence a,, and a random variable W satisfying
ap|W| <1/2 and E(W) = 0, there is

P(W > n,) < exp(E[ap W?])/ exp(ani,).

Proof:

P(W > n,) = P(a,WV > a,n,)
<Elexp(a,W)]/ exp(ann,)

<exp(-a,m) 1+ Bl

< exp(—ay1n) exp(Ela, W)
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The first inequality comes from Markov inequality under exp(-) being a monotonically in-
creasing non-negative function. The second inequality is by exp(x) < 1+z+ 22 for |z| < 1/2
taking x = a,W and E|a,W| = 0. The third inequality is from 1 + = < exp(x) for z > 0.

O

Lemma 7 For n large enough and A, = Ai,As, where Ay, and As, are defined in As-
sumption 6, there exists a positive constant c¢; such that E[Wy(a',a)? | Z] < c;h=%4 A2 for
a,a € Ay.

Proof: Write O; = (M;, A;, X;), by f(O;|0f) = f(O;) for i € I, there are the first and
second order conditional moments bounded as below,

Bk (4~ )8t /07) = 180} [ { T2 ot apsoao,

da
< sup |Au(d,a)l sup f(Oz)/Hk(uJ)duj
j=1

a’,acAp O, EMxAgx X

da
< swp Adda) s FO)]] / ;)

a’,acApy O;EMxAgx X

S CIATLJ

(A — a;)/h) } A% (d',a) f(0,;)dO;

E[(Kh(Ai — a')Ay(d’, a))*|Of] = l{Bl”(C)}/ { H : h

g(sup |Aie<a’,a>|)2( sup f(oz-))h—d/*ﬁl o

o’ ac Ao O, EMx Agx X
< Coh™ M AL
Therefore,
E[Wi(d', a)*|07] = E[{ KnAi — E(Knli) }*|Of)
= E[(K,A#)*|0f] — 2E[K, Ay OSE[KRAie] + E[K, Ay
< Coh™ ¥ A2 + 0,(1/Vnhda)
Since 0,(1/vnhd4) goes to zero, there always exists a constant ¢; large enough such that
E[Wi(d',a)? | Z!] < e;h=% A2 for large n. O

Because Ay is compact, Ay x Ay is also compact. Thus, we can cover the range of (d/,a)
by a finite number M, of cubes Cy,, each centered at (aﬁm, agn), k =1,...,M,, and has
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length m,,. Since each cube has a volume of md4 and Ay x Aj has a finite volume, there
is M, o m;%. To prove the uniform convergence of the target term, each of the following
decomposed terms is bounded individually:

sup [g(a’, a) — E[g(a’, a)]|

a’,aceAg

< Joax sup 9(a’,a) — glaj, .. arn)| (9)
T 1<k<Ma gy @) E(Aox A)C k,
1 190k, kn) — L300, 050 (10)
T Hax sup E[§(a}, s arn)] — Elg(d’, a)]|. (11)

1<k<Mn (a’,a)e(Ao XAo)ﬂCk’n

To begin with, we look at (10). By lemma 4, for any ¢ > 0, there exists a C' > 0 such that
P(B,(C)) > 1—¢/M,. Hence, P(B5(C)) < ¢/M,, and

_ ALl
P( max [§(d, k) = BlG(0 0, apn)]| > 1)

<M, sup P(|g(a’,a) —E[g(d’, a)]| > nn)

a,a’ €Ag

n sup P(|g(a’,a) = E[g(d, a)]| > nn, Ba(C)) + My sup P(|g(d’, a) — E[g(a’, a)]| > 1, BL(C))

a,a’€Ag a,a’€Ap

<M, sup P(|g(a’,a) = E[g(d’,a)]| > nn, B(C)) + Mo P(B,,(C))

a,a’€Ag

<M, sup P(|g(a’,a) = E[g(d’, a)]| > mn, Ba(C)) + €. (12)

a,a’ €Ag

So we simply have to bound M,, sup P(|§(a’,a) —E[g(d’,a)]| > nn, B,(C)). Specifically, we
a,a’€Ag

examine P(|g(a’,a) — E[g(d,a)]| > n,, B,(C)) for a,d’ € Ay.

P(|g(a’, a) = E[g(a’, a)]| > 1, Bn(C))

=P(|n" Z Z Wig(d', a)| > 1, Bu(C))

=1 i€l
L L

=P(n™' > Y Wila',a) > 0, Bu(C)) + P(n™ > Y Wila',a) < —nn, B(C))
=1 i€l =1 i€l

< Z > P Wild', a) > 1, Bia(C)) + P(—n""Wi(d', a) > 1, Bin(C))

—ZZE Wie(d', a) > n, | Op)L(Bin(C)] + E[P(—n""Wie(d',a) > n | OF)L(B1(C))]
<2n exp(—a, 1) Elexp(ann *E[W(d, a)|Of])] (13)

43



The last equality comes from lemma 5. The last inequality is obtained from applying lemma
6 and its conditions are examined as follows. First, we have E[Wj(a’,a)] = 0 from the
definition of W,(a’, a). Second, let A,, = Ay, Asy,, when I(B;,,(C)) = 1, there is

sup [Wie(a',a)] < sup [Ai(d’,a)| sup Ky(A;i —a') + sup E[j(d’,a)]

a’,acApicly a’,acAg a’€Ag a’,acAp
<C?A, sup K, (A; — d') + 0,(1/Vnhda),
a’'eAy

so Wi(d',a) is bounded. Lastly, we choose a,, = In(n)vnh® /A, so a,/n — 0, and together
with the boundedness of W, on By, (C), there is |a,n "W (t)| < 1/2 for n large enough.

Let n, = coA,,/vVnhd then a,n, = In(n)c; — 0o, and based on lemma 7, we have

2 2, 7,da 9
%E[Mg(a/,a)Q‘Og] < M 1 h*dAAi = [in(n)]

n? A? n? n

which converges to zero by L’Hospital’s rule. As a result, equation (12) is now bounded by

P( max 1§(af, 0, akn) = ELG(0 00 axn)]| > )

<M,2n exp(—annn)E[exp(ain_2E[W/M(a', a)2 | O7])] + €

<M, 2n exp ( — coln(n) + ¢ [l”(:)P) o

in(n)

<2M,n n

et e < 2
for n large enough by choosing ¢, such that ¢ > 2 and appropriate M,,. This indicates

| max 19(ten) — E§(trn)]] = Op(1n)

, which is a rate of 0,(1/vnh) because A, — 0 by Assumption 6.

Next, we proof uniform convergence for (9). By the assumption that kernels k(-) are bounded,

we have K(A; —d') = hd% H;lil k;(A”,;aj) < c3/h%. Then,
| ax sup |Kn(A; — a')Ay(d,a) — Kp(A; — a;’n)Ai(g(aﬁm, Q)|
=R=Mn(af a)e(AoxAo)NChp
<cyhda sup lla — agnl] X [|a" = @i, || < h™m3

(a’,a)E(AoX.Ao)ﬂCk,n
where ¢} is c3 multiplied by the Lipschitz constant of Ay. By choosing m,, = o,((h% /n)1/*),
equation (9) is of rate o,(1/vnhdt).

Previously the cubes were defined such that M, oc 1/md. So the choice of m, leads to
M, >> (nh~?4)%/4 This is consistent with the proof of (10) above as long as ¢ is large
enough such that M, /n®~! = o,(1).
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Lastly, for (11),

max sup |E[§](a’ n ak,n)] - E[ﬁ(a/> a)]|
1Sk§Mn(a/,a)€(AoXAo)ﬂCk,n o
< max sup E(|g(a).,, arn) — g(a’,a)]]
1§k’§Mn(a’,a)€(AoXAo)ﬂCk,n &
< max sup |G(a s arn) — §(a’, a)| = 0,(1/Vnhr)

- 1<k<Mn(a/,0)€(Ao X A0)NCr
The last equality comes from the rate of (9).
From (9), (10), and (11), there is

sup [g(a, a) — E[g(d’, a)]| = 0,(1/Vnh).

a’,acAg
Our target term (8) can be written as
L
V hdA/nZ Z Kp(Ai — d)Au(d',a) = Vnhiag(d', a)
=1 i€l
and

sup [g(a’,a)] < sup [g(a’,a) — E[g(a’,a)]| + sup |E[g(a’, a)]| = 0p(1/Vnhia),

a’,aeAg a’,a€Ap a’,a€Ap

we know the target term is uniformly o,(1) over d’,a € A,.

Proof of (R1-1) and (R1-2)
We need to bound A and Y — 7.
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