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Abstract
The multinomial probit (MNP)7 framework is based on a multivariate Gaussian latent

structure, allowing for natural extensions to multilevel modeling. Unlike multinomial logistic
models, MNP does not assume independent alternatives. Kindo et al. 9 proposed multinomial
probit BART (MPBART) to accommodate Bayesian additive regression trees (BART) for-
mulation in MNP. The posterior sampling algorithms for MNP and MPBART are collapsed
Gibbs samplers. Because the collapsing augmentation strategy yields a geometric rate of con-
vergence no greater than that of a standard Gibbs sampling step, it is recommended whenever
computationally feasible7,12. While this strategy necessitates simple sampling steps and a
reasonably fast converging Markov chain, the complexity of stochastic search for posterior
trees may undermine its benefit. We address this problem by sampling posterior trees condi-
tional on the constrained parameter space and compare our proposals to that of Kindo et al. 9 ,
who sample posterior trees based on an augmented parameter space. We also compare to the
approach by Sparapani et al. 23 that specified the multinomial model in terms of conditional
probabilities. In terms of MCMC convergence and posterior predictive accuracy, our pro-
posals are comparable to the conditional probability approach and outperform the augmented
tree sampling approach. We also show that the theoretical mixing rates of our proposals are
guaranteed to be no greater than the augmented tree sampling approach.
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comes, Latent Models
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1 Introduction

Bayesian additive regression trees (BART)4 is a flexible semiparametric Bayesian approach for

regression on a recursively binary-partitioned predictor space; it uses sum-of-trees to model the

mean function such that nonlinearities and interactions along with additive effects are naturally

accounted for, and regularization priors are imposed to favor shallow trees to reduce over-fitting.

There has been considerable literature on extending BART to various types of outcome vari-

ables16,24,28. We consider the extension of BART to multinomial probit models7 (MNP). Existing

BART-related work has developed efficient Markov chain Monte Carlo (MCMC) algorithms for

Gaussian likelihoods, which naturally adapt to frameworks with Gaussian-distributed latent vari-

ables. However, careful consideration of data augmentation (DA) schemes is needed to ensure

computational efficiency of implementing BART under the multinomial probit framework. The

main contributions of this paper are to provide a detailed review of sampling algorithms for pa-

rameter expansion that are based on DA schemes and to introduce a set of new MCMC algorithms

for multinomial probit BART (MPBART).

Our work is motivated by the need for accurate predictive modeling of patient engagement in

HIV care6,29, while accounting for death and transfer out of care as competing endpoints10. These

models are used to characterize patient transition through the HIV cascade, which describes essen-

tial stages of the HIV care continuum: (a) HIV diagnosis through testing, (b) linkage to care, (c)

engagement in care, (d) initiation of antiviral therapy (ART) through retention, and (e) sustained

suppression of viral load. The care cascade framework has been widely used as a monitoring and

evaluation tool for improving and managing HIV health care systems. We will demonstrate and

compare different algorithms for using multinomial BART models to characterize engagement

and retention in HIV care in Section 4.

MNP7 and multinomial logistic19 (MNL) regression models are widely used tools for predict-

ing and describing the relationships of explanatory variables to multinomial outcomes. Kindo

et al. 9 proposed the MPBART framework that fits BART to the multivariate Gaussian latent
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variables in the MNP. Related work incorporating BART into categorical response models is in-

troduced by Murray 21 , where BART is extended to log-linear models that include multinomial

logistic BART (MLBART). Both MNP and MNL regression can be derived from a latent vari-

able framework, where each outcome category is a manifestation of a latent utility that depends

on covariates. The observed categorical outcome is the utility-maximizing category. MNP and

MNL regression assume the latent utility distribution to be multivariate Gaussian and independent

extreme-value distribution, respectively. The MNP formulation is appealing because it incorpo-

rates between-category dependence, a feature that extends naturally to MPBART. We will show

that allowing non-zero correlations between latent variables can have a substantial impact on pre-

dictive accuracy.

There are two difficulties in sampling from posterior distributions of MNP. First, a closed-form

expression for the multinomial outcome’s marginal distribution is not available; second, identi-

fiability of the MNP model requires constraints on the covariance matrix of the latent variables,

hindering specification of conjugate distributions and making posterior sampling challenging.

There has been considerable work on Bayesian sampling techniques to address these computa-

tional issues based on DA-related methods1,7,17,18,22. The original DA algorithm25 is a stochastic

generalization of the EM algorithm5. Marginal data augmentation (MDA)15,20,26 generalizes and

accelerates the DA algorithm via parameter expansion such that full conditionals are easier to

sample from and expansion parameter(s) are subsequently marginalized over. Heuristically, the

MDA Gibbs sampler can traverse the parameter space more efficiently with the extra variation in-

duced by the expansion parameter(s), resulting in possible computational gains, including a faster

mixing rate15,20. Li et al. 11 provided an example for posterior sampling of a correlation matrix

via parameter expansion. By contrast, sampling from the constrained model parameter space is

difficult because the full conditionals do not have a simple closed form; the MDA scheme circum-

vents the difficulty and allows an easier and more efficient joint sampling of expansion parameter

and transformed model parameters. Imai and van Dyk 7 unified several previous proposals under
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the umbrella of MDA, examined different prior specifications of the model parameters, and out-

lined two adaptations of the MDA scheme for posterior sampling of the MNP based on parameter

expansion.

Building upon the work of Imai and van Dyk 7 , Kindo et al. 9 proposed an algorithm, which

we refer to as KD, for fitting the MPBART. Our own implementation of KD yielded oversized

posterior trees from overfitting and difficulty in posterior convergence.We therefore propose two

alternative procedures for fitting the MPBART that have simpler algorithmic structure, improved

convergence in the sum-of-trees and the covariance matrix, and a mixing rate at least as good as

the original procedure when the Markov chain reaches equilibrium. Our algorithms show better

out-of-sample accuracy and stability in predictive tasks under various settings when evaluated

in terms of posterior predictive distribution and posterior mode. The posterior mode accuracy

is commonly used as an evaluation metric in supervised learning literature9. Our proposals are

based on the idea of fitting the sum-of-trees in a normalized parameter space to reduce disruptions

to the stochastic search of posterior trees, resulting in a less difficult convergence of the Markov

chain.

In every step of the Gibbs sampler, the MDA scheme requires (1) the joint sampling of expan-

sion parameter(s) and transformed model parameters, and (2) the marginalization over the expan-

sion parameter. However, the two actions are not always feasible for complicated Gibbs sampling

problems. For example, sampling the functional mean component jointly with an expansion pa-

rameter in an MPBART algorithm is difficult because posterior trees are sampled by stochastic

search. Algorithms for MNP and MPBART generally fall under the category of partially marginal-

ized augmentation (PMA) samplers27, which relaxes the fully marginalized structure of the MDA

and can lead to improvements in convergence rate when more steps involve joint sampling and

marginalization of the expansion parameter(s)’ components.

We will show that KD and one of our proposals are, respectively, the MPBART-generalization

of the Schemes 1 and 2 for estimating MNP proposed in Imai and van Dyk 7 . The primary distinc-
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tion between the two MNP schemes is that the former uses augmentation in the sampling of model

coefficients for the mean of latent variables, while the latter does not. Imai and van Dyk 7 recom-

mended Scheme 1 over Scheme 2 because its geometric rate of convergence is at least as good as

Scheme 2. One of our key contributions is to demonstrate that the same recommendation does

not apply to MPBART. Contrary to the intuition regarding PMA samplers that more augmented

posterior sampling steps are associated with improved posterior convergence, we illustrate that

when sophisticated Metropolis-Hastings or stochastic search is involved in complex samplers,

certain steps may be sensitive to or undermined by the incorporation of expansion parameters.

This motivates the need for new algorithm design considerations.

This paper is structured as follows. Section 2.1 describes the formulation of MNP and MP-

BART frameworks; Section 2.2 reviews sampling schemes for the MNP, including DA and MDA;

Section 2.4 describes the existing algorithms and introduces our new proposals for fitting the

MPBART; and Section 2.5 provides a theoretical evaluation of different MPBART algorithms in

terms of the mixing rate under stationarity. Section 3 compares multiple BART-related multino-

mial outcome models, including our proposals, on simulated datasets under different settings, and

Section 4 demonstrates the comparison on a real-world dataset from a large HIV care program in

Kenya. Section 5 summarizes the conclusions.

2 Method

2.1 General Background

For the categorical outcome S, which takes value in {0, . . . , C}, the general latent variable frame-

work for multinomial models assumes that S is a manifestation of unobserved latent utilities

Z = (Z0, . . . , ZC)
T ∈ RC+1 , where S = S(Z) = argmaxlZl, i.e. S = k if Zk ≥ Zl for

all l ̸= k. In general, C is the number of outcome categories minus one. The framework re-

quires normalization for identifiability because S is invariant to a translation or a scaling (by a

positive constant) of Z. Without loss of generality, we assume that the reference outcome cate-
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gory is 0; the normalization is achieved by first characterizing S as a function of latent variables

W = (W1, . . . ,WC)
T ∈ RC , such that Wl = Zl − Z0 and

S(W ) =

 l if max(W ) = Wl ≥ 0

0 if max(W ) < 0.
(1)

The MNP models W in terms of covariates X and accounts for correlation across outcome levels

by assuming W follows a multivariate normal model

W (X) ∼ MVN(G(X; θ),Σ), (2)

where G(X; θ) = (G1(X; θ1), . . . , GC(X; θC))
T , θ = (θ1, . . . , θC)

T and Σ = {σij} is a C × C

positive definite symmetric matrix.

Identifiability of the model requires normalizing the scale of W because by definition the out-

come S is invariant to a multiplication of W by any positive constant. From (2), the normalization

for scale occurs by imposing a constraint on the covariance matrix Σ, such as trace(Σ) = C 2. To

illustrate, suppose there are latent variables W̃ such that

W̃ (X) ∼ MVN(G(X; θ̃), Σ̃), (3)

where W̃ (X) = αW (X), G(X; θ̃) = αG(X; θ), Σ̃ = α2Σ, and α > 0. By (1), W̃ and W yield

the same S. However, if Σ satisfies the trace constraint, W is the normalized counterpart of W̃

and α2 = trace(Σ̃)/C is a positive scalar that ensures a one-to-one mapping from W to W̃ .

Direct posterior sampling of parameters in (2) is difficult due to the constraint on Σ. A tech-

nique for easier sampling is to augment the parameter space such that it is possible to specify a

conjugate prior so that target parameters can be obtained by converting samples back to the nor-

malized scale. The obvious choice of augmented parameter space is the one without the normal-

ization for scale, i.e. (W̃ , θ̃, Σ̃) in (3). Imai and van Dyk 7 suggested a constrained inverse Wishart
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prior for Σ such that its joint distribution with α2 is equivalent to the unconstrained covariance

matrix having prior distribution Σ̃ ∼ inv-Wishart(ν,Ψ). This makes it possible to sample easily

from the conditional posterior of Σ̃. Setting ν = C+1 and Ψ to be an identity matrix is equivalent

to sampling the corresponding correlations of Σ̃ from a uniform distribution. When ν > C + 1,

the expectation of Σ̃ has a closed form E(Σ̃) = Ψ/(ν − C − 1).

The standard framework for MNP regression assumes a linear model specification for each

Wl(X), i.e. Gl(X; θl) = Xθl for l = 1, . . . , C. Kindo et al. 9 proposed MPBART to increase the

predictive power and the flexibility in dealing with complicated nonlinear and interaction effects.

The innovative idea is to approximate each mean component of W (X) using a sum of m trees,

Gl(X; θl) =
∑m

k=1 g(X; θlk), where l = 1, . . . , C and θlk is the set of parameters corresponding

to the kth binary tree for the lth latent variable, Wl(X). MPBART uses the same Bayesian regular-

ization prior on the trees to restrict over-fitting as in Chipman et al. 4 . An important contribution

of Kindo et al. 9 is deriving from (2) the conditional distribution for Gibbs sampling of each in-

dividual tree, and embedding it into the backfitting procedure of BART. See Chipman et al. 3 and

Chipman et al. 4 for details on the BART backfitting procedure.

2.2 Review of Data Augmentation

The goal of data augmentation (DA) schemes is to draw samples from (y, ϕ), where y and ϕ

represent the augmented data and model parameters, respectively. The sampling algorithm Kindo

et al. 9 have for MPBART heavily relies on Imai & van Dyk’s7 work on fitting the MNP, which

explores different Gibbs samplers of (W, θ,Σ) under the umbrella of marginal data augmentation

(MDA)15,20, an extension and improvement of the DA algorithm25. This section provides a brief

overview of relevant developments on the DA algorithm for fitting the MPBART in Section 2.4.

Basic data augmentation. To begin with, we illustrate the simple task of sampling (y, ϕ) under

the DA algorithm of Tanner and Wong 25:

Scheme [DA]

1. Draw y ∼ f(y|ϕ).
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2. Draw ϕ ∼ f(ϕ|y).

Marginalized data augmentation (MDA). The basic idea of MDA versus DA is to expand the

model and overparameterize f(y, ϕ) to f(y, ϕ, α); the expansion parameterα often corresponds to

a transformation of y and/or ϕ. For example, αmay index a transformation of y to ỹ = tα(y)where

tα is one-to-one and differentiable, thereby expanding the model from f(y, ϕ) to f(ỹ, ϕ, α). The

choice to sample from f(y, ϕ, α) or f(ỹ, ϕ, α) depends on the specific model, and they are usually

interchangeable. This approach is appealing when sampling from f(y, α|ϕ) or f(ỹ, α|ϕ) is easier

than the sampling of y alone. Liu and Wu 15 and Meng and Van Dyk 20 simultaneously developed

MDA. Liu and Wu 15 provided theoretical results on the convergence rate of the MDA. Meng and

Van Dyk 20 introduced the MDA under two augmentation schemes, grouping and collapsing12,14;

both procedures lead to the same distribution of (y, ϕ) as Scheme [DA].

MDA with grouping. The grouping scheme samples conditionally on the expansion parame-

ter α, while the collapsing scheme integrates α out from the joint distribution. MDA under the

grouping scheme is preferred when the sampling of y or ϕ jointly with α is easier than that in

Scheme [DA]. For example, when f(ϕ|y, α) is easier to sample than f(ϕ|y), and f(y, α|ϕ) is easy

to sample, the sampler can “group” y and α together and treats them as a single component,

Scheme [MDA-G]

1. Draw (y, α) ∼ f(y, α|ϕ).

2. Draw ϕ ∼ f(ϕ|y, α).

MDA with collapsing. MDA under the collapsing scheme “collapses down” α by integrating

it out from the joint distributions, i.e. y ∼ f(y|ϕ) =
∫
f(y|ϕ, α)f(α|ϕ)dα and ϕ ∼ f(ϕ|y) =∫

f(ϕ|y, α)f(α|y)dα. The implementation is as follows:

Scheme [MDA-C]

1. Draw (y, α) ∼ f(y, α|ϕ) by α ∼ f(α|ϕ) and y ∼ f(y|ϕ, α).

2. Draw (ϕ, α) ∼ f(ϕ, α|y) by α ∼ f(α|y) and ϕ ∼ f(ϕ|y, α).
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Notice that the newly sampled α is discarded in each step of the Scheme [MDA-C]. In practice,

it may be reasonable to assume a priori independence between ϕ and α because ϕ are parameters

identified from the observed data, which does not contain information on α. Furthermore, given

that transforming the augmented data y is of interest, it may be true that the conditional sampling

of model parameters ϕ is more plausible under ỹ than y. Accordingly, Scheme [MDA-C] can be

rewritten as:

Scheme [MDA-C’]

1. Draw (ỹ, α) by drawing α ∼ f(α) and then y ∼ f(y|ϕ, α), and compute ỹ = tα(y).

2. Draw (ϕ, α) by drawing α ∼ f(α|ỹ) and then ϕ ∼ f(ϕ|ỹ, α).

The f(α) and f(α|ỹ) are the prior and posterior (under the transformed augmented data) of α,

respectively. The optimality of MDA under the collapsing scheme (Scheme [MDA-C]) over the

DA algorithm (Scheme [DA]) in terms of convergence rate is proven in Meng and Van Dyk 20 and

Liu and Wu 15 . Liu and Wu 15 also introduced Scheme [MDA-LW], which is equivalent to Scheme

[MDA-C’] in terms of the sampling distribution and rate of convergence. This scheme is implicitly

applied in the algorithms for fitting the MNP and MPBART, typically in the normalization of

model parameters after each round of Gibbs sampling. Structurally, Scheme [MDA-LW] is in the

form of Scheme [DA] with an additional intermediate step, which makes more clear the connection

between the MDA and the DA algorithm:

Scheme [MDA-LW]

1. Draw y ∼ f(y|ϕ).

2. Draw α1 ∼ f(α), compute ỹ = tα1(y); draw α2 ∼ f(α|ỹ), compute y′ = t−1
α2
(ỹ).

3. Draw ϕ ∼ f(ϕ|y′).

Note that y and y′ follow the same distribution. The intuition behind the improvement of

Scheme [MDA-LW] compared to the DA algorithm is that the intermediate step of sampling from

y′ allows the sampler for ϕ to explore the expanded model space with more freedom.
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2.3 Data Augmentation for the MNP

For fitting the MNP, Imai and van Dyk 7 introduced two algorithms for the Gibbs sampling of

(W, θ,Σ), which we refer as IvD1 and IvD2. The IvD1 modifies Scheme [MDA-C’] by expanding

the model to (W̃ , θ̃, Σ̃, α) such that W̃ and (θ̃, Σ̃) correspond to ỹ and ϕ, respectively, and α =

(α1, α2, α3):

Scheme [IvD1]

1. Draw (W̃ , α1) by drawing α1 ∼ f(α|Σ) and then W ∼ f(W |θ,Σ), and compute W̃ =

α1W .

2. Draw (θ̃, α2) by drawing α2 ∼ f(α|W̃ ,Σ) and then θ̃ ∼ f(θ̃|α2, W̃ ,Σ), and compute

θ = θ̃/α2.

3. Draw (Σ̃, α3) by Σ̃ ∼ f(Σ̃|W̃ −Xθ̃) and compute α3 =

√
trace(Σ̃)/C.

Using Σ̃ andα3 from Step 3, we can compute the normalized covariance matrixΣ = Σ̃/α2
3 and

use it in Steps 1 and 2 of the next round of posterior sampling; this is analogous to havingα3 index a

one-to-one mapping from the expanded model space (Σ̃) to the normalized space (Σ). Steps 1 and

3 in Scheme [IvD1] collapse down α1 and α3, but Scheme [IvD1] is not a direct implementation

of the MDA as in Scheme [MDA-C’] because Step 1 is conditional on θ, or equivalently (θ̃, α2)

where θ = θ̃/α2. Hence, Step 2 does not integrate out (collapse down) α2.

Standard MDA (Schemes [MDA-C] and [MDA-C’]) are collapsed Gibbs samplers that inte-

grate out expansion parameter(s) by redrawing and discarding α in every step. Scheme [IvD1] is

a partially marginalized augmentation (PMA)27 procedure that relaxes the restrictive structure of

full marginalization in MDA. PMA allows the conditional distribution in a kth step of the Gibbs

sampler to depend on expansion parameter(s) drawn in other steps. Algorithms for fitting the

MPBART in Section 2.4 are also PMA procedures.

IvD1 can also be viewed from a different perspective. Due to the linearity in model specifica-

tion of the MNP, i.e. Gl(X; θl) = Xθl for l = 1, . . . , C, the linear relationship between θ and θ̃
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holds in Step 2 of Scheme [IvD1], and it is equivalent to direct sampling of θ from f(θ|W̃/α2,Σ).

Hence, IvD1 can be rearranged as follows:

Scheme [IvD1’]

1. Draw W ∼ f(W |θ,Σ).

2. Draw α1 ∼ f(α|Σ), compute W̃ = α1W ; draw α2 ∼ f(α|W̃ ,Σ), compute W ′ = W̃/α2.

3. Draw θ ∼ f(θ|W ′,Σ).

4. Draw Σ by Σ̃ ∼ f(Σ̃|W̃ −Xθ̃), compute

α3 =

√
trace(Σ̃)/C, and Σ = Σ̃/α2

3, where θ̃ = α2θ.

The first three steps are equivalent to sampling f(W, θ|Σ) in Scheme [MDA-LW]. Step 4

collapses down α3, but the fact that Step 4 is conditional on (α1, α2) through (W̃ , θ̃) makes IvD1

not a collapsed Gibbs sampler collectively. IvD2 is given as follows:

Scheme [IvD2]

1. Draw (ϵ̃, α1) by α1 ∼ f(α|Σ) and W ∼ f(W |θ,Σ), compute ϵ̃ = α1[W −G(X; θ)].

2. Draw (Σ, α3) by Σ̃ ∼ f(Σ̃|ϵ̃), compute

α3 =

√
trace(Σ̃)/C, and Σ = Σ̃/α2

3.

3. Draw θ ∼ f(θ|W,Σ).

IvD2 separates the sampling into two parts, (ϵ̃,Σ) and θ; the first part utilizes the MDA under

Scheme [MDA-C] and the second part is a standard Gibbs sampling draw. Theoretically, as stated

in Imai and van Dyk 7 , IvD1 and IvD2 have the same lag-one autocorrelation when the MCMC

chain is stationary. However, they showed through numerical experiments that IvD1 is better than

IvD2 in estimating the MNP in terms of being less sensitive to the starting values of (θ,Σ).

In the next section, we describe Kindo et al.’s9 algorithm (KD) and our two new proposals

and connect them to the schemes reviewed here.
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2.4 Algorithms for Posterior Sampling Algorithms of MPBART

For ease of notation, let Wi,−j = (Wi1, . . . ,Wi,j−1, Wi,j+1, . . . ,WiC) and let µ = G(X; θ) ∈ RC

be the sum-of-trees component under the normalization of scale. Kindo et al.’s algorithm for

fitting the MPBART can be summarized as the following augmented Gibbs sampler:

Algorithm [KD]

1. Sample (W̃ , α2
1)|(µ,Σ, S).

(a) Draw α2
1 from its conditional prior f(α2|Σ) = trace[ΨΣ−1]/χ2

νC ;

(b) for each j, update Wij conditional on Wi,−j , µ, Σ, and the observed outcome Si, from

a truncated normal distribution; and

(c) transform Wi and Σ to W̃i = α1Wi and Σ̃∗ = α2
1Σ.

2. Sample θ̃|(W̃ , α2
1,Σ).

(a) Draw θ̃ ∼ f(θ̃|W̃ , Σ̃∗); and

(b) set µ̃ = G(X; θ̃) and µ = µ̃/α1.

3. Sample (Σ, α2
3)|(W̃ , θ̃).

(a) Draw Σ̃ ∼ Inv-Wishart(N + ν,Ψ+
∑N

i=1 ϵ̃iϵ̃
T
i ), where ϵ̃i = W̃i − µ̃i;

(b) set α2
3 = trace(Σ̃)/C; and

(c) set Σ = Σ̃/α2
3 and W = µ+ ϵ̃/α3.

Step 1 jointly samples from f(W̃ , α2
1|µ,Σ, S) by first drawing the expansion parameter α2

1

from its prior distribution f(α2|Σ), and then computing W̃ = α2W where W is sampled from

f(W |µ,Σ, S). Step 1(a) samples α2
1 such that α2

1/trace[ΨΣ−1] follows an inverse-chi-squared

distribution with νC degrees of freedom. Step 1(b) samples each Wij from a truncated normal

distribution described in Appendix D.1 based on (1), as the observed outcome Si imposes an

interval constraint on Wi, e.g. if Si equals the reference level 0, then Wij’s are right truncated at
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0. Step 2 samples posterior trees across multivariate mean components by Gibbs sampling and

each posterior tree is sampled as in regular BART. Step 3 computes α3 using the sampled Σ̃ and

then normalizes the scale of the model by Step 3(c).

Notice that the sampling of model parameters θ̃ is conditional on (W̃ , Σ̃∗), which is equiva-

lent to conditioning on (W̃ , α2
1,Σ) or (W,α2

1,Σ); this observation is essential to the analysis of

Algorithm [KD] in Section 2.5. Algorithm [KD] is closely related to IvD1 (Scheme [IvD1]) but

different in that it does not update the expansion parameter α2 as in Step (b) of IvD1. This is

analogous to having α2 in IvD1 set to the sampled value of α1 from Step (a). The reason for this

modification is that the posterior tree parameters in BART, denoted by θ, are drawn via stochastic

search; it would be extremely challenging to derive an analytical expression for f(α|W̃ ,Σ) from∫
f(α, θ|W̃ ,Σ)dθ as in MNP because the specification is no longer linear in θ.

In the first step, W̃ is a scaled version of W through W̃ = α1W . From (3), fitting the sum-

of-trees component to W̃ is analogous to sampling the parameters in an un-normalized space.

Posterior tree sampling in BART makes a one-step update on each tree from its previous state, by

one of the following four types of proposals: GROW, PRUNE, CHANGE, and SWAP. Stochastic

search in a massive space of possible tree structures can be challenging when W̃ , the quantity to

which the sum-of-trees is fitting, is unstable. Heuristically, we would expect fitting the sum-of-

trees component to W , which is a normalized quantity, instead of W̃ to be more stable, induce

better posterior convergence, and improve the prediction accuracy. Given these considerations,

we modify Algorithm [KD] and propose the following:

Algorithm [P1]

1. Sample (W,α2
1)|(µ,Σ, S).

(a) Draw α2
1 from its conditional prior f(α2|Σ) = trace[ΨΣ−1]/χ2

νC ;

(b) for each j, update Wij conditional on Wi,−j , µ, Σ, and Si, from a truncated normal

distribution; and

(c) transform Wi to W̃i = α1Wi.
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2. Sample θ|(W,Σ). Draw θ ∼ f(θ|W,Σ) and then set µ = G(X; θ).

3. Sample (Σ, α2
3)|(W,α1, θ).

(a) Draw Σ̃ ∼ Inv-Wishart(N + ν,Ψ+
∑N

i=1 ϵ̃iϵ̃
T
i ), where ϵ̃i = W̃i − α1µi;

(b) set α2
3 to trace(Σ̃)/C; and

(c) set Σ = Σ̃/α2
3 and W = µ+ ϵ̃/α3.

In the first proposal (Algorithm [P1]), the expansion parameters (α1, α3) do not affect the sampling

of the trees in Step 2. If the order of Step 2 and 3 are swapped, it becomes Scheme [IvD2] in

Section 2.2. Algorithms [KD] and [P1] are the MPBART analogues of IvD1 and IvD2 for the

MNP. Imai and van Dyk 7 expected IvD1 to outperform IvD2 for the MNP and demonstrated

through simulations. While for MPBART, we find Algorithm [P1] to be equal or superior to

Algorithm [KD] theoretically (Section 2.5) and computationally (Sections 3 and 4).

As an alternative to Algorithm [P1], we introduce another proposal, Algorithm [P2], which

“abandons” the MDA framework. The only augmentation involved in Algorithm [P2] is Step 3,

which adopts a Scheme [MDA-LW]-like strategy in the constrained parameter space. If we fix

α1 to be 1, both Algorithms [KD] and [P1] simplify to Algorithm [P2]. We show in Appendix B

that Algorithms [P1] and [P2] draw Σ from approximately the same sampling distribution under

certain conditions.

Algorithm [P2]

1. Sample W |(µ,Σ, S). For each j, update Wij conditional on Wi,−j , µ, Σ, and Si from a

truncated normal distribution.

2. Sample θ|(W,Σ). Draw θ ∼ f(θ|W,Σ) and then set µ = G(X; θ).

3. Sample (Σ, α2
3)|(W, θ).

(a) Draw Σ̃ ∼ Inv-Wishart(N + ν,Ψ+
∑N

i=1 ϵiϵ
T
i ), where ϵi = Wi − µi;

(b) set α2
3 to trace(Σ̃)/C; and
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(c) set Σ = Σ̃/α2
3 and W = µ+ ϵ/α3.

Appendix D provides more details on the implementation of the algorithms. Software for fitting

all three algorithms is available at https://github.com/yizhenxu/GcompBART.

2.5 Theoretical Comparison of Algorithms for MPBART

In what follows, we assume the Markov chain of (W, θ,Σ) has reached stationary. Liu 13 intro-

duced the usage of diagrams that show dependency structures between two consecutive iterations

for analyzing Bayesian algorithms. We do this for Algorithms [KD], [P1], and [P2], and derive

their mixing rate in terms of autocovariances. We restate the algorithms under the expanded model

(W,µ,Σ, α), where W is the normalized latent variables with distribution MVN(µ,Σ) and α is

the expansion parameter:

Algorithm [KD]:

(W,α1)|µ,Σ ⇒ µ|(W,α1),Σ ⇒ (Σ, α3)|(W,α1), µ,

Algorithm [P1]:

(W,α1)|µ,Σ ⇒ µ|W,Σ ⇒ (Σ, α3)|(W,α1), µ,

Algorithm [P2]:

W |µ,Σ ⇒ µ|W,Σ ⇒ (Σ, α3)|W,µ,

where α’s are indexed as in Scheme [IvD1].

We make a few observations about these three algorithms: (a) Algorithm [KD] groups W and

α1 together, as in Scheme [MDA-G]; (b) Algorithm [P1] is structurally equivalent to Scheme

[IvD2]; and (c) the sampling of the normalized covariance matrix in all three algorithms in-

tegrates out α3 as in Scheme [MDA-C], i.e. Σ ∼
∫
f(Σ, α|W,µ)dα in Algorithm [P2], and

Σ ∼
∫
f(Σ, α|W,α1, µ)dα in Algorithms [KD] and [P1]. Based on these observations, we prove

the dependency structure as diagrams in Figure 1.
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W (t) W (t+1) W (t) W (t+1) W (t) W (t+1)

α(t) α(t+1) α(t) α(t+1)

µ(t) µ(t+1) µ(t) µ(t+1) µ(t) µ(t+1)

Σ(t) Σ(t+1) Σ(t) Σ(t+1) Σ(t) Σ(t+1)

Figure 1: Above diagrams from left to right correspond to Algorithms [KD], [P1], and [P2],
respectively.

A common measure for quantifying the mixing rate of a Markov chain is the lag-1 autocorre-

lation; lower autocorrelation indicates a better mixing rate. Using the dependency diagrams, we

argue that Algorithm [P2] has the best mixing rate when the Markov chain is stationary.

Theorem 1. Assuming the chain of MPBART parameters (W,µ,Σ, α) has reached equilibrium,

1. For µ, Algorithms [P1] and [P2] have the same lag-1 autocorrelation, which is no larger

than that from Algorithm [KD];

2. For Σ, Algorithms [KD] and [P1] have the same lag-1 autocorrelation, which is no less

than that from Algorithm [P2].

Proof: Appendix A.

3 Simulation

This simulation study will compare the prediction accuracy of four algorithms, Algorithms [KD],

[P1], [P2], and the multinomial BART via conditional probabilities, which is implemented by the

mbart function in the BART package23 and denoted by Algorithm [CP] in the rest of the paper.

Algorithm [CP] adopts a conditional probit framework and represents the categorical outcome

with mutually exclusive binary indicators, to which a sequence of binary BART models are fitted

to estimate the conditional probabilities across outcome levels, i.e. pil = P (Si = l|Si > l − 1)
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for l = 0, . . . , C − 1, such that the marginal outcome distribution has the form P (Si = l) =

pil
∏l−1

v=0(1− piv) for l < C and P (Si = C) =
∏C−1

v=0 (1− piv).

We consider two different metrics of predictive accuracy which we define as follows. Denote

the posterior sample of model parameters by {θ(j),Σ(j)|j = 1, . . . , J}. The posterior predictive

distribution for Si can be represented by its J posterior predictions, {Ŝ(1)
i , . . . , Ŝ

(J)
i }, where

Ŝ
(j)
i =

 l if max(Ŵ (j)
i ) = Ŵ

(j)
il ≥ 0

C if max(Ŵ (j)
i ) < 0,

(4)

Ŵ
(j)
i = (Ŵ

(j)
i1 , . . . , Ŵ

(j)
i,C) is the vector of latent variables, Ŵ (j)

i ∼ MVN(G(Xi; θ
(j)),Σ(j)), and

G(Xi; θ
(j)) = (G1(Xi; θ

(j)
1 ), . . . , GC(Xi; θ

(j)
C )).

Recall that each mean component is parameterized as sum of trees,Gl(Xi; θ
(j)
l ) =

∑m
k=1 g(Xi; θ

(j)
lk ),

where l = 1, . . . , C.

We use posterior percent agreement and posterior mode to assess prediction accuracy. While

posterior mode accuracy compares the observed outcome si and the maximum a posteriori (MAP)

estimate of the outcome, posterior percent agreement measures the concordance between si and

the sampled posterior predictive distribution. Under the multinomial probit framework, Algo-

rithms [KD], [P1] and [P2] directly sample posterior predicted outcomes, {Ŝ(1)
i , . . . , Ŝ

(J)
i }, e.g.

the jth posterior draw is Ŝ
(j)
i ; the posterior percent agreement is averaged over N subjects as

follows,

1

N

N∑
i=1

{
1

J

J∑
j=1

1{Ŝ(j)
i = si}

}
. (5)

Algorithm [CP] generates the posterior predicted marginal probabilities, {p̂(1)i , . . . , p̂
(J)
i }, where

the jth posterior draw is p̂
(j)
i = {P̂ (j)(Si = l); l = 0, . . . , C}. The corresponding posterior
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percent agreement is then written as 1
N

∑N
i=1

{
1
J

∑J
j=1 P̂

(j)(Si = si)

}
.

Posterior mode accuracy summarizes the agreement between the observed si and the posterior

mode prediction, Ši, via

1

N

N∑
i=1

1{Ši = si}. (6)

For Algorithms [KD], [P1], and [P2], the posterior mode prediction is the most frequent posterior

outcome prediction, Ši = argmaxl∈{0,...,C}
∑J

j=1 1{Ŝ
(j)
i = l}. For Algorithm [CP], it is the

mode of the average posterior predictive marginal probability, argmaxl∈{0,...,C}
∑J

j=1 P̂
(j)(Si = l).

The accuracy measures are different in that the posterior mode accuracy ignores the infrequent

categories in MCMC sampling, whereas the posterior percent agreement accounts for all posterior

predictive draws.

Numerical experiments for all simulations use 30,000 posterior draws after a burn-in of 50,000

for each model, and parameterize the mean component of each latent variable as the sum of 100

trees. We adopt default setting for estimating Algorithm [CP] using the BART package. The tree

priors for the other three algorithms are specified as recommended in Chipman et al. 4 , where the

prior probabilities for the posterior tree search are 0.25, 0.25, 0.4, and 0.1 for tree GROWTH,

PRUNE, CHANGE, and SWAP, respectively. Prior specification of the latent variable covariance

matrix assumes the scale matrix Ψ has diagonal elements equal to 1.

For each simulation, we create a training setD1 and test setD2, each of size 5000. Under differ-

ent specifications of the reference level and prior on the covariance matrix, we use the algorithms

on D1. For each set of posterior samples for each algorithm, the corresponding out-of-sample

performance is evaluated by calculating the two accuracy metrics on D2.

We simulate D1 and D2 similar to Kang and Schafer 8 . We set C = 2 and assume a set

of covariates (U, V ) where U = (U1, . . . , U5)
iid∼ Uniform(0, 1) and V ∼ Uniform(0, 2), and set

G1 = 15 sin(πU1U2)+(U3−0.5)2−10U4−5U5. We setG2 = (U3−0.5)3−20U4U5+4V in Setting

1 for a relatively balanced distribution of the outcome categories andG2 = (U3−0.5)2−U4U5+4V
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in Setting 2 for highly unbalanced outcomes. The covariance matrix is given by Σ =

 1 0.5

0.5 1


for both settings.

We simulate 50 replicates for each setting. Averaged across simulation replicates, the dis-

tribution of the outcome alternatives is ( 0.45, 0.25, 0.30) and (0.32, 0.65, 0.03) for Settings 1

and 2, respectively. Table 1 compares the out-of-sample posterior predictive accuracy of the al-

gorithms, under different priors for the augmented latent covariance, Σ̃ ∼ Inv-Wishart(ν,Ψ).

Assuming Ψ11 = Ψ22 = 1, we consider uniform (ν = C + 1,Ψ12 = 0), negatively tilted

(ν = C + 3,Ψ12 = −0.5), and positively tilted (ν = C + 3,Ψ12 = 0.5) priors. Our propos-

als and Algorithm [CP] have similar predictive performance based on both accuracy measures.

Algorithm [KD] performs well under the posterior mode accuracy, but is relatively more sensitive

to the prior specifications and tends to have large variation across posterior predictions, resulting

in a sub-optimal performance under the posterior agreement accuracy, which reflects the posterior

predictive distribution.

We also investigate how the multinomial probit algorithms behave in estimating Σ under dif-

ferent prior specifications, with the same reference level as in data generation. Table 2 summarizes

the posterior mean of the normalized covariance matrix Σ. For σ11 and σ12, E[·|D] is the posterior

mean based on a simulation replicate D; E{E[·|D]} and S{E[·|D]} are the mean and standard

deviation ofE[·|D] across the 50 replicates. Note that σ22 is not displayed in the Table 2 becauseΣ

is normalized, satisfying σ22 = trace(Σ)−σ11. The true conditional correlation, corr(W1,W2|G),

equals 0.5; for the posterior mean of the covariance, σ12, Algorithm [KD] returns negative esti-

mates while our proposals generate positive estimates, agreeing with the true correlation in sign.

Appendix C shows how σ12 affects the outcome distribution, given σ11 = σ22 = 1. Conditional

on the additive trees, σ12 has a substantial effect on the outcome predictive distribution, for exam-

ple, Appendix C illustrated that a negative σ12 induces smaller reference level outcome probability

P (S = 3). Having a negative estimated posterior mean of σ12 may lead to posterior tree estimates

that are systematically different from the simulation truth, where σ12 is set to be positive. In Ap-
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pendix E, we provide diagnostic plots of the MCMC convergence in the first simulation replicate

of the two settings for the sum-of-trees and the covariance components. Our proposals converge

faster than Algorithm [KD] because the latter updates the sum-of-trees component conditional

on latent utilities that are augmented / not normalized, which makes posterior convergence more

challenging. When the outcome is unbalanced, posterior convergence is more difficult.

Setting 1
E{E[σ11|D]}(S{E[σ11|D]})

ν − C Ψ12 KD P1 P2
1 0 1.311 (0.032) 1.035 (0.041) 1.039 (0.039)
3 -0.5 1.325 (0.057) 1.035 (0.036) 1.034 (0.036)
3 0.5 1.296 (0.059) 1.039 (0.042) 1.038 (0.042)

E{E[σ12|D]}(S{E[σ12|D]})
ν − C Ψ12 KD P1 P2

1 0 -0.108 (0.007) 0.344 (0.053) 0.354 (0.056)
3 -0.5 -0.118 (0.009) 0.321 (0.057) 0.348 (0.062)
3 0.5 -0.122 (0.010) 0.365 (0.054) 0.359 (0.059)

Setting 2
E{E[σ11|D]}(S{E[σ11|D]})

ν − C Ψ12 KD P1 P2
1 0 0.848 (0.051) 0.769 (0.046) 0.770 (0.041)
3 -0.5 0.599 (0.059) 0.783 (0.047) 0.774 (0.041)
3 0.5 0.691 (0.067) 0.779 (0.036) 0.758 (0.049)

E{E[σ12|D]} (S{E[σ12|D]})
ν − C Ψ12 KD P1 P2

1 0 -0.321 (0.009) 0.801 (0.029) 0.797 (0.025)
3 -0.5 -0.349 (0.011) 0.782 (0.028) 0.791 (0.026)
3 0.5 -0.354 (0.011) 0.801 (0.026) 0.802 (0.028)

Table 2: Comparison of Algorithms [KD], [P1], and [P2] under reference level 3 on Σ with 50
replications. Training and test datasets each with 5000 observations are generated under Settings
1 and 2, setting reference level to 3. E[·|D] indicates sample mean on one simulated data D.
E{E[·|D]} and S{E[·|D]} are the mean and sd of E[·|D] across the 50 simulations of D. The
prior of Σ̃ is Inv-Wishart(ν,Ψ), where Ψ11 = Ψ22 = 1. Posterior predictive accuracy measured
by (5) and (6) are reported under (ν − C,Ψ12) being (1, 0), (3,−0.5), and (3, 0.5).
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4 Application

In this application, we investigate patients’ retention in HIV care after enrollment as a function of

their baseline characteristics and treatment status. The data were extracted from electronic health

records of adults enrolled in HIV care between June 1st 2008 and August 23rd 2016 in AMPATH,

an HIV care program in Kenya. We look at a 200-days window after the initial care encounter

and split the data into training and test sets of sample sizes 49,942 and 26,714, respectively. We

define the outcome as disengagement, engagement, and reported death, where engagement in care

means there was at least one visit to the clinic for HIV care during the first 200 days after a pa-

tient’s initial encounter, and disengagement otherwise if the person was not reported dead. The

outcome distribution is extremely imbalanced, such that the frequency of disengagement, engage-

ment, and death is 16%, 80%, and 4%, respectively. Covariates include baseline age, gender, year

of enrollment, travel time to clinic, marriage status, weight, height, baseline treatment status, in-

dication of CD4 measurement at or post baseline, and the most recent CD4. Table 3 summarizes

the observed distribution of each covariate stratified by outcome level.

We use 10,000 posterior draws after a burn-in of 10,000 and keep other settings the same as in

simulations. Table 4 compares the posterior accuracy for Algorithms [KD], [P1], [P2], and [CP].

Algorithm [KD] has posterior mode accuracy comparative to, but not as good as, that from our

proposals and Algorithm [CP]. Algorithm [KD] is not separating the latent utilities of the true

outcome level and those for the other outcome alternatives well, resulting in a less ideal posterior

agreement accuracy. In terms of the stability in accuracy measures with respect to the choice

of reference level, the performance of the proposals is similar to Algorithm [CP] and better than

Algorithm [KD].

Under the reference level being disengagement, the first row of Figure 2 presents the MCMC

convergence plots of the average tree depth corresponding to latent variables W1 = Zeng −Zdiseng

and W2 = Zdeath − Zdiseng, and the histogram of the posteriors of σ12 = Cov(W1,W2), where

(Zeng, Zdiseng, Zdeath) are latent utilities corresponding to each of the outcome levels and σ12 is the
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Disengaged (6497) Engaged (67462) Died (2697)
Male 22.5 34 51.3

Year of Enrolment 2008 5.1 9.7 11.2
2009 8.3 18.7 17.1
2010 9.3 17.3 17.6
2011 9.2 15.8 17
2012 17.9 11.5 14
2013 18.5 8.9 11.3
2014 18.8 9.0 8.2
2015 12.8 8.3 3.3
2016 0.3 0.8 0.3

Travel Time <30 min 17.4 24 23.6
30 min - 1 h 19.4 26.9 29.4

1 h - 2 h 8.2 14.6 16.5
>2 h 5.2 7.7 7.8

Missing 49.9 26.8 22.6
WHO Stage 1 13.7 4.7 1.0

2 1.8 2.0 1.1
3 2.3 2.2 4.3
4 0.6 0.3 0.7

Missing 81.7 90.7 92.9
Married 57.2 52.3 49.7

Missing 13.6 8.3 6.2
On ART 39.9 14.1 14.1

CD4 at/post baseline 64.8 80.9 74.7
Post-baseline CD4 update 6.6 26 7.6

Most recent CD4 327 (144, 525) 279.77 (137, 462) 59 (18, 152)
Age 29.91 (24.66, 36.51) 35.56 (28.93, 43.65) 37.97 (31.7, 45.7)

Height 163 (158, 169) 165 (159.1, 171) 167 (160, 173)
Missing 24.6 16.2 17.7

Weight 57.5 (51, 65) 56 (50, 63) 50 (44, 57)
Missing 7.9 3.9 6.9

Table 3: Summary table of covariates stratified by outcome. The table reports “median (25th
percentile, 75th percentile)” for continuous variables and percentage of true for binary variables
or each level of categorical variables.
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Posterior Agreement Accuracy
Train Test

Ref Level KD P1 P2 CP KD P1 P2 CP
1 0.67 0.82 0.82 0.67 0.81 0.81
2 0.55 0.82 0.82 0.54 0.81 0.81
3 0.66 0.82 0.82 0.66 0.81 0.81

0.81 0.81

Posterior Mode Accuracy
Train Test

Ref Level KD P1 P2 CP KD P1 P2 CP
1 0.88 0.89 0.89 0.88 0.89 0.89
2 0.85 0.89 0.89 0.84 0.89 0.89
3 0.88 0.89 0.89 0.88 0.89 0.89

0.89 0.89

Table 4: Accuracy comparison of Algorithms [KD], [P1], and [P2] on the AMPATH data. Poste-
rior predictive accuracy measured by (5) and (6) are reported under reference levels 1, 2, and 3.
The prior of Σ̃ is Inv-Wishart(3, I3).

normalized conditional covariance of W1 and W2. The plots show that the average tree depths are

around 6 and 9 respectively for W1 and W2 under Algorithm [KD], and approximately 2 for those

under Algorithms [P1] and [P2]. The Bayesian regularization priors that favor shallow trees do

not work well for Algorithm [KD], as a tree depth of 6 allows up to 26 leaves, which increases

the risk of over-fitting and makes the stochastic tree search inefficient. The second and third rows

of Figure 2 set engagement and reported death as the reference level, respectively, and the latent

variables are defined accordingly. Similar conclusions are observed for tree depth. Under all

choices of the reference level, the histogram of σ12 from Algorithms [P1] and [P2] agree on the

sign of σ12, which was demonstrated in previous simulations to match the sign of the true value

of the underlying σ12.

5 Concluding Remarks

While computational performance is an important criterion in building Gibbs sampler for com-

plicated models, the dependency structure and sampling schemes are as crucial for devising an

algorithm that generates a Markov chain with computational efficiency and fast mixing rates. We
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Figure 2: Traceplot of posterior average tree depth for each latent utility in the application to
AMPATH data (left), and histogram of the σ12 (right) under its prior (purple), posterior from
Algorithms [KD] (red), [P1] (black), and [P2] (blue); same color specification applies to the left
plot. Posterior inference is under ν = C + 1, Ψ12 = 0, with reference level as indicated in the
plot labels.
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explore the data augmentation schemes involved in the Bayesian estimation of multinomial probit

models and propose two alternative algorithms that improve the computational and theoretical

properties of the estimating procedure of MPBART proposed in Kindo et al. 9 . Theoretically, we

prove that the mixing rate of our proposals is at least as good as Algorithm [KD] for the mean and

covariance matrix of the latent variables.

We evaluate the algorithms’ computational performance under the same parameter specifica-

tions using two accuracy measures: posterior percent agreement and posterior mode accuracy.

Posterior mode accuracy, which compares observed categorical outcomes to the mode in pos-

terior predictions, is widely used in machine learning literature, particularly in cross-sectional

supervised learning studies such as Kindo et al. 9 . Alternatively, posterior percent agreement ac-

counts for the posterior predictive probabilities of the outcome labels, so the estimated distribution

of the non-dominant levels also influences the metric. In applications where multinomial models

are used as generative components, posterior predictive distribution is more relevant than pos-

terior mode predictions and it is crucial to examine the posterior predictive distribution of the

categorical outcomes.

Through simulations and application, we compare our proposals to the estimating procedure in

Kindo et al. 9 (Algorithm [KD]) and the mbart function in the BART package (Algorithm [CP]).

We find that our proposals and Algorithm [CP] have similar predictive performances; however,

while Algorithm [KD] performs well in terms of posterior mode, its posterior percent agreement is

less ideal. One possible explanation is that Algorithm [KD] samples posterior trees conditional on

augmented latent variables, making posterior convergence more challenging; this may undermine

the Bayesian regularization priors in BART, resulting in larger trees and higher computational

costs, and lead to exploration of the latent correlation structure in a parameter space different

from the truth. In Appendix C we further explore how the correlation of the latent variables

affects the outcome distribution, demonstrating that an estimated covariance of the wrong sign

may be associated with a sum-of-trees component with values that are systematically different
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from the true data generating mechanism.

Even though our proposals are similar to Algorithm [CP] in terms of predictive performance,

we point out that Sparapani et al.’s23 approach is fundamentally different from MPBART because

it models the multinomial outcome sequentially based on an ordering of the categories, and thus

the approach is not invariant to the ordering. On the other hand, MPBART jointly models the

latent utilities using a multivariate Gaussian BART such that the predictions do not depend on the

ordering.

The two approaches have a subtle yet important distinction in actual application. Suppose

in an application where we jointly model patients’ transfer out, engagement, disengagement, and

death using Algorithm [CP] with the following sequential models: P (transfer = 1), P (death =

1|transfer = 1), and P (engaged = 1|transfer = 0, death = 0). In this case, the probability of

death is independent of the choice between engagement and disengagement. This is not preferable

in practice because we would expect either a higher disengagement rate to be associated with a

lower death reporting rate or a higher engagement rate to be associated with a healthier status and

thus a lower death rate. Additionally, the key feature separating the multinomial probit framework

from other choice models, e.g. multinomial logit or conditional probit, is the assumption that

the stochastic terms have a multivariate Gaussian distribution with a covariance matrix. This

formulation enables natural extensions to multilevel data models by incorporating dependence

structures with additional complexity, such as including random effects in the model to account

for clinic clustering effect in the joint modeling of HIV care engagement and mortality using

electronic health records.
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Appendix

A Proof of Theorem 1

The lag-1 autocorrelation of µ is defined as corr(µ(t), µ(t+1)) = cov(µ(t),µ(t+1))√
var(µ(t))var(µ(t+1))

,where t indexes

posterior draws. Under the condition that the chain has reached its stationary distribution

f(W,µ,Σ, α|S,X), whereS andX are observed outcome and covariates, var(µ(t)) = var(µ(t+1)) =

var(µ). Hence, we only need to look at the covariance for comparing the autocorrelation.

Consider two consecutive draws of µ from the Algorithm [P1]. We find that

E(µ(t)µ(t+1)) =E[E(µ(t)µ(t+1)|Σ(t),W (t+1), α(t+1))]

=E[E(µ(t)|Σ(t),W (t+1), α(t+1))]

E[E(µ(t+1)|Σ(t),W (t+1), α(t+1))]

=E[E(µ|Σ,W, α)2],

where the first equality follows from the law of total expectation; the second and the third equalities

follow from the fact that µ(t) and µ(t+1) are conditionally independent and identically distributed

given (Σ(t),W (t+1), α(t+1)). This can be seen from the diagram for Algorithm [KD] in Figure 1; in

particular, µ(t) connects with µ(t+1) only through (Σ(t),W (t+1), α(t+1)). As a result, the covariance

is given by

cov(µ(t), µ(t+1)) = E(µ(t)µ(t+1))− E(µ(t))E(µ(t+1))

= E[E(µ|Σ,W, α)2]− E[E(µ|Σ,W, α)]2

= var[E(µ|Σ,W, α)].

Similarly, the covariance under Algorithms [P1] and [P2] is derived to be var[E(µ|Σ,W )]. The

key to this calculation is the fact that µ(t) connects with µ(t+1) only through (Σ(t),W (t+1)) (see
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Figure 1). We now compare the two variances,

var[E(µ|Σ,W, α)] =var{E[E(µ|Σ,W, α)|Σ,W ]}

+ E{var[E(µ|Σ,W, α)|Σ,W ]}

≥var{E[E(µ|Σ,W, α)|Σ,W ]}

=var[E(µ|Σ,W )].

The first equality comes from the law of total conditional variance and the last equality results

from the law of total expectation. Therefore, we can conclude that the lag-1 autocorrelation of µ,

corr(µ(t), µ(t+1)) is closer to zero in Algorithms [P1] and [P2] than in Algorithm [KD].

Recall from Figure 1 that, Σ(t) connects with Σ(t+1) only through (W (t+1), α(t+1), µ(t+1)) in

Algorithms [KD] and [P1], and through (W (t+1), µ(t+1)) in Algorithm [P2]. Hence, with a similar

argument as above, we can show that the the lag-1 autocorrelation of Σ, corr(Σ(t),Σ(t+1)), for

Algorithm [P2] is no larger than in Algorithms [KD] and [P1].

B Equivalence in the Sampling Distribution between Algorithms [P1] and

[P2]

The purpose of this section is to show that Algorithms [P1] and [P2] have the same sampling

distribution of Σ when the sample size of the observed data, N , is sufficiently large and the scale

matrix in the prior distribution of Σ̃ is relatively small compared to the sample estimate of the

covariance matrix for the latent variables. Note that Algorithms [P1] and [P2] draw θ and W from

the same conditional distributions. Hence, the conclusion here implies that the two procedures

sample from the same joint distribution of (θ,W,Σ).

Given the prior on the unconstrained covariance matrix Σ̃ ∼ Inv-Wishart(ν,Ψ), we can cal-

culate in closed form the conditional posterior distributions of Σ̃ and Σ under Algorithms [P1]

and [P2], respectively, where Σ = Σ̃ C

trace(Σ̃)
.

In Algorithm [P1], Step 1 samples the working parameter α2
1 from its conditional prior distri-
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bution,

α2|Σ ∼ Inv-Gamma(νC/2, trace(ΨΣ−1)/2),

which is equivalent to trace(ΨΣ−1)/χ2
νC

7 and has expectation

E[α2
1|Σ] = trace(ΨΣ−1)/(νC − 2).

Since inverse-Wishart is conditionally conjugate to the covariance matrix in a Gaussian model,

the conditional posterior distribution of Σ̃ under Algorithm [P1] is

Σ̃|α2
1,W, µ ∼ Inv-Wishart(N + ν,Ψ+ α2

1

N∑
i=1

(Wi − µi)(Wi − µi)
T ),

and this leads to the conditional posterior distribution of the corresponding restricted covariance

matrix Σ,

f(Σ|α2
1,W, µ) ∝ |Σ|−(N+ν+C+1)/2×

trace
{
[Ψ + α2

1

∑N
i=1(Wi − µi)(Wi − µi)

T ]Σ−1

}−νC/2

.

Similarly, the conditional posterior distributions under Algorithm [P2] for Σ̃ and Σ, respectively,

are

Σ̃|W,µ ∼ Inv-Wishart(N + ν,Ψ+
∑N

i=1(Wi − µi)(Wi − µi)
T ),

f(Σ|W,µ) ∝ |Σ|−(N+ν+C+1)/2×

trace
{
[Ψ +

∑N
i=1(Wi − µi)(Wi − µi)

T ]Σ−1

}−νC/2

.

In order to compare the posterior conditional of Σ under Algorithms [P1] and [P2], we look at

the posterior mean and variance using a first-order Taylor series expansion. The posterior mean
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under Algorithm [P1] is

E(Σ|α2
1,W, µ) = E

(
Σ̃

α2

∣∣∣∣α2
1,W, µ

)
≈ E(Σ̃|α2

1,W, µ)

E(α2|α2
1,W, µ)

=
E(Σ̃|α2

1,W, µ)

E[trace(Σ̃)|α2
1,W, µ]

× C

=
E(Σ̃|α2

1,W, µ)

trace[E(Σ̃|α2
1,W, µ)]

× C

=
Ψ+ α2

1

∑N
i=1(Wi − µi)(Wi − µi)

T

trace[Ψ + α2
1

∑N
i=1(Wi − µi)(Wi − µi)T )]

× C

=
Ψ+ α2

1

∑N
i=1(Wi − µi)(Wi − µi)

T

trace(Ψ) + α2
1

∑N
i=1

∑C
j=1(Wij − µij)2

× C

Similarly, the posterior mean of Σ under Algorithm [P2] is

E(Σ|W,µ) =
Ψ +

∑N
i=1(Wi − µi)(Wi − µi)

T

trace(Ψ) +
∑N

i=1

∑C
j=1(Wij − µij)2

× C.

For the posterior variance of Σ, we simplify the notation by writing the posterior conditional

distribution of Σ̃ as Inv-Wishart(ν̃, Ψ̃), where ν̃ = N + ν and the scale matrix Ψ̃ is

Ψ+ α2
1

∑N
i=1(Wi − µi)(Wi − µi)

T under Algorithm [P1]

Ψ+
∑N

i=1(Wi − µi)(Wi − µi)
T under Algorithm [P2]

Then, the posterior variance has the following form,

var(σij) = var(
σ̃ij

α2
)

≈ E(σ̃ij)
2

E(α2)2
×

{
var(σ̃ij)

E(σ̃ij)2
− 2

cov(σ̃ij, α
2)

E(σ̃ij)E(α2)
+

var(α2)

E(α2)2

}
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where

E(σ̃ij) = Ψ̃ij/(ν̃ − C − 1)

E(α2) = E(σ̃11 + . . .+ σ̃CC) = trace(Ψ̃)/(ν̃ − C − 1)

var(σ̃ij) =


(ν̃−C+1)Ψ̃2

ij+(ν̃−C−1)Ψ̃iiΨ̃jj

(ν̃−C)(ν̃−C−1)2(ν̃−C−3)
if i ̸= j

2Ψ̃2
ii

(ν̃−C−1)2(ν̃−C−3)
if i = j

var(α2) =
2

(ν̃ − C − 1)2(ν̃ − C − 3)

C∑
i=1

Ψ̃2
ii

cov(σ̃ij, α
2) =

C∑
k=1

cov(σ̃ij, σ̃kk)

= 2
Ψ̃ijΨ̃kk + (ν̃ − C − 1)Ψ̃ikΨ̃jk

(ν̃ − C)(ν̃ − C − 1)2(ν̃ − C − 3)
.

Specifying the inverse-Wishart Prior for the covariance matrix is analogous to assuming a prior

knowledge of ν Gaussian samples having covariance matrix Ψ. When the number of observations

N gets larger, the posterior concentrates more on the empirical covariance matrix. When N is

sufficiently large and Ψkj << α2
1

∑N
i=1

∑C
j=1(Wik − µik)(Wij − µij) for all k, j = 1, . . . , C, the

posterior mean of Σ under Algorithms [P1] and [P2] are approximately the same,

E(Σ|α2
1,W, µ) ≈ α2

1

∑N
i=1(Wi − µi)(Wi − µi)

T

α2
1

∑N
i=1

∑C
j=1(Wij − µij)2

× C

=

∑N
i=1(Wi − µi)(Wi − µi)

T∑N
i=1

∑C
j=1(Wij − µij)2

× C

≈ E(Σ|W,µ).

In the same way, we can show that var(Σ|α2
1,W, µ) ≈ var(Σ|W,µ).
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C Outcome Distribution as a Function of Correlation

This section discusses how the outcome distribution is connected to the correlation of latent util-

ities for C = 2. We assume the outcome is determined as follows:

W = (W1,W2)
T ∼ MVN

(µ1

µ2

 ,

1 ρ

ρ 1

)
,

S =


1 if W1 ≥ max{0,W2}

2 if W2 ≥ max{0,W1}

3 if W1 < 0 and W2 < 0.

We start with the outcome probability at the reference level,

P (S = 3) = P (W1 < 0,W2 < 0)

=

∫ 0

−∞

∫ 0

−∞

1√
|2πΣ|

exp

{
− 1

2
(w1 − µ1, w2 − µ2)Σ

−1

w1 − µ1

w2 − µ2

}
dw1dw2

=

∫ 0

−∞

∫ 0

−∞

1

2π
√

1− ρ2

exp

{
− 1

2

[w1 − µ1 − ρ(w2 − µ2)]
2

1− ρ2
− (w2 − µ2)

2

2

}
dw1dw2

=

∫ −µ2

−∞

∫ 0

−∞

1

2π
√

1− ρ2

exp

{
− 1

2

[w1 − µ1 − ρw̃2]
2

1− ρ2

}
exp

{
− w̃2

2

2

}
dw1dw̃2

=

∫ −µ2

−∞

∫ −µ1−ρw̃2√
1−ρ2

−∞

1

2π
exp

{
− w̃2

1

2

}
exp

{
− w̃2

2

2

}
dw̃1dw̃2

=

∫ −µ2

−∞

1

2π
τ

(
−µ1 − ρw̃2√

1− ρ2

)
exp

{
− w̃2

2

2

}
dw̃2,

where the second equality comes from the inversion and determinant lemma of matrices, and

τ(u) =
∫ u

−∞ exp{− s2

2
}ds in the last equality.
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Next, we write P (S = 3) as a function of ρ,

f(ρ) =
∫ −µ2

−∞
1
2π
τ(−µ1−ρt√

1−ρ2
) exp{− t2

2
}dt. The corresponding derivative w.r.t ρ has the form,

d

dρ
f(ρ)

=

∫ −µ2

−∞

1

2π
√

1− ρ2

exp

{
− 1

2

(µ1 + ρt)2

1− ρ2

}
exp

{
− t2

2

}(
− t+ ρµ1

1− ρ2

)
dt

=

∫ −µ2

−∞

1

2π
√

1− ρ2

exp

{
− 1

2

(t+ ρµ1)
2 + µ2

1(1− ρ2)

1− ρ2

}(
− t+ ρµ1

1− ρ2

)
dt

=

∫ −µ2+ρµ1

−∞

1

2π
√

1− ρ2

exp

{
− 1

2

t̃2

1− ρ2

}
exp

{
− 1

2
µ2
1

}(
− t̃

1− ρ2

)
dt

=
1

2π
√

1− ρ2
exp

{
− 1

2
µ2
1

}
exp

{
− 1

2

(−µ2 + ρµ1)
2

1− ρ2

}
⇒ d

dρ
f(ρ) > 0, ρ ∈ (−1, 1).

As a result, for every possible combination of (µ1, µ2), P (S = 3) is always a strictly increasing

function of ρ. Next, we show that how the non-reference-level outcome probabilities change w.r.t

ρ depends on (µ1, µ2). For outcome level 1, we have

P (S = 1) = P (W1 ≥ W2,W1 ≥ 0) = P (W2 −W1 ≤ 0,−W1 ≤ 0)

= P (Z1 ≤ 0, Z2 ≤ 0)

with

Z1

Z2

 ∼ N

(µ2 − µ1

−µ1

 ,

2(1− ρ) 1− ρ

1− ρ 1

)
.
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The outcome probability can be written as

P (S = 1)

=
∫ 0

−∞

∫ 0

−∞
1

2π
√

1−ρ2
exp

{
− 1

2
[z1−(µ2−µ1)−(1−ρ)(z2+µ1)]2

1−ρ2

}
exp

{
− (z2 + µ1)

2

2

}
dw1dw2

=

∫ µ1

−∞

1

2π
τ

(
−(µ2 − µ1)− (1− ρ)t√

1− ρ2

)
exp

{
− t2

2

}
dt

Similar to the procedure for f(ρ), we write P (S = 1) as g(ρ). The derivative w.r.t. ρ is

d

dρ
g(ρ) =

− 1
2
exp

{
− 1

1+ρ

[
µ1+µ2

2

]2}
− (µ2−µ1)

√
1+ρ

2(1−ρ)
τ

(
µ1+µ2

2
√
1+ρ

)
∈
(
− 1

2
exp

{
− 1

1+ρ

[
µ1+µ2

2

]2}
± |µ1−µ2|

1−ρ

√
π(1+ρ)

2

)
.

The last interval comes from τ(u) ∈ (0,
√
2π) by definition. In fact, from the way S depends on

(W1,W2) for the non-reference levels, we can easily see that the derivative of P (S = 2) w.r.t ρ

falls into the same interval in the above derivation. Clearly, the center and width of the interval

depend on (µ1+µ2

2
, ρ) and (|µ1 − µ2|, ρ), respectively. So how P (S = 1) and P (S = 2) vary with

ρ are heavily influenced by the position of and the distance between the latent variables.

The following plots display how the outcome distribution changes with ρ under three different

pairs, (µ1, µ2). We can see that the reference level outcome probability P (S = 3) increases with

ρ in all three settings, and the relative positions of P (S = 1) and P (S = 2) are closely related to

the values of and the difference between µ1 and µ2.

D Algorithms’ Pseudo Code

Using the notation in Section 2.1, we provide details on the algorithms in Section 2.4.
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Figure 3: Outcome distribution as a function of ρ under (µ1, µ2) being (0,0), (0,-0.2), and (-0.1,
0.3).

Algorithm [KD]
Step 0: Initialize parameters l = 0, α(0),W (0), θ(0),Σ(0)

while l < L do do
Step 1: Update (W̃ (l+1), (α

(l+1)
1 )2) via P (W̃ , α2|µ(l),Σ(l), S)

(a) Draw (α
(l+1)
1 )2 ∼ trace[Ψ(Σ(l))−1]/χ2

νC ;
(b) Draw W (l+1) = (W

(l+1)
1 , . . . ,W

(l+1)
C ) ∼ MVN(µ(l),Σ(l)) by

for i ∈ 1, . . . , N do
for j ∈ 1, . . . , C do

W
(l+1)
ij |W (l+1)

i(−j) ∼ TN(m
(l)
ij , (τ

(l)
j )2) ▷ Appendix D.1

where W (l+1)
i(−j) = (W

(l+1)
i1 , . . . ,W

(l+1)
i,j−1 ,W

(l)
i,j+1, . . . ,W

(l)
i,C)

end for
end for;

(c) Set W̃ (l+1) = α
(l+1)
1 W (l+1).

Step 2: Update θ̃(l+1) via P (θ̃|W̃ (l+1), α
(l+1)
1 ,Σ(l))

(a) Gibbs sampling of binary trees:
for b ∈ 1, . . . ,m do

for j ∈ 1, . . . , C do
Update W̃ †

jb and draw θ̃
(l+1)
jb ∼ P (θ̃jb|W̃ †

jb, (α
(l+1)
1 τ

(l)
j )2) ▷ Appendix D.2

end for
end for;

(b) Set µ̃(l+1)
ij = Gj(Xi; θ̃

(l+1)
j ) and µ

(l+1)
ij = µ̃

(l+1)
ij /α

(l+1)
1 .

Step 3: Update (Σ(l+1), (α
(l+1)
3 )2) via P (Σ, α2|W̃ (l+1), θ̃(l+1))

(a) Draw Σ̃ ∼ Inv-Wishart(n+ ν,Ψ+
∑n

i=1 ϵ̃iϵ̃
T
i ),

where ϵ̃i = (ϵ̃i1, . . . , ϵ̃i,C) and ϵ̃ij = W̃
(l+1)
ij − µ̃

(l+1)
ij for j = 1, . . . , C;

(b) Setting (α
(l+1)
3 )2 = trace(Σ̃/C);

(c) Re-scaling model parameters based on α
(l+1)
3 :

Σ(l+1) = Σ̃/(α
(l+1)
3 )2 and W (l+1) = µ(l+1) + ϵ̃/α

(l+1)
3 ;

end while
Step 4: Prediction given new input ▷ Appendix D.3
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Algorithm [P1]
Step 0: Initialize parameters l = 0, α(0),W (0), θ(0),Σ(0)

while l < L do do
Step 1: Update (W̃ (l+1), (α

(l+1)
1 )2) via P (W̃ , α2|µ(l),Σ(l), S)

(a) Draw (α
(l+1)
1 )2 ∼ trace[Ψ(Σ(l))−1]/χ2

νC ;
(b) Draw W (l+1) = (W

(l+1)
1 , . . . ,W

(l+1)
C ) ∼ MVN(µ(l),Σ(l)) by

for i ∈ 1, . . . , N do
for j ∈ 1, . . . , C do

W
(l+1)
ij |W (l+1)

i(−j) ∼ TN(m
(l)
ij , (τ

(l)
j )2) ▷ Appendix D.1

where W (l+1)
i(−j) = (W

(l+1)
i1 , . . . ,W

(l+1)
i,j−1 ,W

(l)
i,j+1, . . . ,W

(l)
i,C)

end for
end for;

(c) Set W̃ (l+1) = α
(l+1)
1 W (l+1).

Step 2: Update θ(l+1) via P (θ|W (l+1),Σ(l))
(a) Gibbs sampling of binary trees:

for b ∈ 1, . . . ,m do
for j ∈ 1, . . . , C do

Update W †
jb and draw θ

(l+1)
jb ∼ P (θjb|W †

jb, (τ
(l)
j )2) ▷ Appendix D.2

end for
end for;

(b) Set µ(l+1)
ij = Gj(Xi; θ

(l+1)
j ).

Step 3: Update (Σ(l+1), (α
(l+1)
3 )2) via P (Σ, α2|W̃ (l+1), α

(l+1)
1 , θ(l+1))

(a) Draw Σ̃ ∼ Inv-Wishart(n+ ν,Ψ+
∑n

i=1 ϵ̃iϵ̃
T
i ),

where ϵ̃i = (ϵ̃i1, . . . , ϵ̃i,C) and ϵ̃ij = W̃
(l+1)
ij − α

(l+1)
1 µ

(l+1)
ij for j = 1, . . . , C;

(b) Setting (α
(l+1)
3 )2 = trace(Σ̃/C);

(c) Re-scaling model parameters based on α
(l+1)
3 :

Σ(l+1) = Σ̃/(α
(l+1)
3 )2 and W (l+1) = µ(l+1) + ϵ̃/α

(l+1)
3 .

end while
Step 4: Prediction given new input ▷ Appendix D.3
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Algorithm [P2]
Step 0: Initialize parameters l = 0, α(0),W (0), θ(0),Σ(0)

while l < L do do
Step 1: Update W (l+1) via P (W |µ(l),Σ(l), S)

(a) Draw W (l+1) = (W
(l+1)
1 , . . . ,W

(l+1)
C ) ∼ MVN(µ(l),Σ(l)) by

for i ∈ 1, . . . , N do
for j ∈ 1, . . . , C do

W
(l+1)
ij |W (l+1)

i(−j) ∼ TN(m
(l)
ij , (τ

(l)
j )2) ▷ Appendix D.1

where W (l+1)
i(−j) = (W

(l+1)
i1 , . . . ,W

(l+1)
i,j−1 ,W

(l)
i,j+1, . . . ,W

(l)
i,C)

end for
end for.

Step 2: Update θ(l+1) via P (θ|W (l+1),Σ(l))
(a) Gibbs sampling of binary trees:

for b ∈ 1, . . . ,m do
for j ∈ 1, . . . , C do

Update W †
jb and draw θ

(l+1)
jb ∼ P (θjb|W †

jb, (τ
(l)
j )2) ▷ Appendix D.2

end for
end for;

(b) Set µ(l+1)
ij = Gj(Xi; θ

(l+1)
j ).

Step 3: Update (Σ(l+1), (α
(l+1)
3 )2) via P (Σ, α2|W (l+1), θ(l+1))

(a) Draw Σ̃ ∼ Inv-Wishart(n+ ν,Ψ+
∑n

i=1 ϵiϵ
T
i ),

where ϵi = (ϵi1, . . . , ϵiC) and ϵij = W
(l+1)
ij − µ

(l+1)
ij for j = 1, . . . , C;

(b) Setting (α
(l+1)
3 )2 = trace(Σ̃/C);

(c) Re-scaling model parameters based on α
(l+1)
3 :

Σ(l+1) = Σ̃/(α
(l+1)
3 )2 and W (l+1) = µ(l+1) + ϵ̃/α

(l+1)
3 .

end while
Step 4: Prediction given new input ▷ Appendix D.3

D.1 Gibbs Sampling of the Latent Utilities

Gibbs sampling of the latent utilities from univariate truncated normal distributions is described

in the Section 3 of17. In the pseudo-code,

mij = µij + Σj(−j)(Σ(−j)(−j))
−1[Wi(−j) − µi(−j))]

τ 2j = Σjj − Σj(−j)(Σ(−j)(−j))
−1Σ(−j)j

for the i = 1, . . . , N , j = 1, . . . , C, where

µij =
∑m

d=1 g(Xi; θjd), Σjj is the element at the jth row and jth column of Σ, Σ(−j)(−j) is the

remaining of Σ excluding its jth row and jth column, Σj(−j) is the jth row of Σ excluding its jth
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element Σjj , and Σ(−j)j is similarly derived.

D.2 Tree Sampling in MPBART

Using Algorithms [P1] and [P2] as an example,we follow Section 3.2 of9 and provide the details

on the conditional distributions used to update each individual tree. For simplicity, we exclude

the subscript i. Given W ∼ MVN(µ,Σ), we have Wj|(W(−j), µ,Σ) ∼ N(mj, τ
2
j ) where mj and

τ 2j are defined in Appendix D.1. Based on the fact that µj =
∑m

d=1 g(X; θjd), define

W †
jb =Wj −

b−1∑
d=1

g(X; θjd)−
m∑

d′=b+1

g(X; θjd′)

− Σj(−j)(Σ(−j)(−j))
−1[W(−j) − µ(−j))].

Conditional on (W(−j), µ,Σ),

W †
jb − g(X; θjb) = Wj −mj ∼ MVN(0, τ 2j )

⇒ W †
jb ∼ N(g(X; θjb), τ

2
j ).

Consequently, the bth binary tree of the jth latent variable, θ(l+1)
jb , is updated to estimate the mean

of

W †
jb =W

(l+1)
j −

b−1∑
d=1

g(X; θ
(l+1)
jd )−

m∑
d′=b+1

g(X; θ
(l)
jd′)

− Σ
(l)
j(−j)(Σ

(l)
(−j)(−j))

−1[W
(l+1)
(−j) − µ

(l+1)
(−j) ]
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whereµ(l+1)
(−j) = {Gk(X; θ

(l+1)
k ); k ̸= j} andGk(X; θ

(l+1)
k ) =

∑b−1
d=1 g(X; θ

(l+1)
kd )+

∑m
d′=b g(X; θ

(l)
kd′).

Similarly, in Algorithm [KD],

W̃ †
jb =W̃

(l+1)
j −

b−1∑
d=1

g(Xθ̃
(l+1)
jd )−

m∑
d′=b+1

g(X; θ̃
(l)
jd′)

− Σ
(l)
j(−j)(Σ

(l)
(−j)(−j))

−1[W̃
(l+1)
(−j) − µ̃

(l+1)
(−j) ]

where µ̃(l+1)
(−j) = {Gk(X; θ̃

(l+1)
k ); k ̸= j} andGk(X; θ̃

(l+1)
k ) =

∑b−1
d=1 g(X; θ̃

(l+1)
kd )+

∑m
d′=b g(X; θ̃

(l)
kd′).

D.3 Predictions from MPBART

Given fitted model parameters from the Lth round of posterior sampling, (θ(L),Σ(L)), we obtain

outcome prediction for a new input x as follows:

S(x)

=

reference level 0 if max{W1(x), . . . ,WC(x)} < 0

j if max{0,W1(x), . . . ,WC(x)} = Wj(x)

by drawing

W (x) ∼ MVN(G(x; θ(L)),Σ(L)).
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E Convergence Plots

(a) ν = C + 1, Ψ12 = 0, reference level 1 (b) ν = C + 1, Ψ12 = 0, reference level 2

(c) ν = C + 1, Ψ12 = 0, reference level 3 (d) ν = C + 3, Ψ12 = −0.5, reference level 3

(e) ν = C + 3, Ψ12 = 0.5, reference level 3

Figure 4: Plot of posterior average tree depth for each latent utility as time series, under simula-
tion Setting 1 and hyperparameters described in plot labels. Red, black, and blue correspond to
Algorithms [KD], [P1], and [P2], respectively.
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(a) ν = C + 1, Ψ12 = 0, reference level 1 (b) ν = C + 1, Ψ12 = 0, reference level 2

(c) ν = C + 1, Ψ12 = 0, reference level 3 (d) ν = C + 3, Ψ12 = −0.5, reference level 3

(e) ν = C + 3, Ψ12 = 0.5, reference level 3

Figure 5: Plot of posterior average tree depth for each latent utility as time series, under simula-
tion Setting 2 and hyperparameters described in plot labels. Red, black, and blue correspond to
Algorithms [KD], [P1], and [P2], respectively.
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(a) ν = C + 1, Ψ12 = 0
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(b) ν = C + 3, Ψ12 = −0.5
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(c) ν = C + 3, Ψ12 = 0.5

Figure 6: Plot of posterior σ11 and σ12 as time series on the left, and histogram of the σ12 under
its prior (purple), posterior from Algorithms [KD] (red), [P1] (black), and [P2] (blue); same color
specification applies to the left plot. Posterior inference is conducted under Setting 1, reference
level 3, and hyperparameters described in plot labels.
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(a) ν = C + 1, Ψ12 = 0

Correlation

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

(b) ν = C + 3, Ψ12 = −0.5
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(c) ν = C + 3, Ψ12 = 0.5

Figure 7: Plot of posterior σ11 and σ12 as time series on the left, and histogram of the σ12 under its
prior (blue), posterior from Algorithms [KD] (red), [P1] (black), and [P2] (blue). Posterior infer-
ence is conducted under simulation Setting 2, reference level 3, and hyperparameters described
in plot labels. Red, black, and blue correspond to Algorithms [KD], [P1], and [P2], respectively.
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