Causal Framework for Individualized Treatment

Evaluation using Multivariate Generalized Mixed
Effect Models with Longitudinal Data
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Individualized causal effect of treatment regimes on important
biomarkers and endpoints
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Covid Data
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» Data source: The Johns Hopkins Covid-19 Precision Medicine

P
days since admission

Analytics Platform (PMAP) Registry

» All patients consecutively admitted with confirmed SARS-CoV-2

infection by microbiological testing from 3/4/2020-6/25/2020
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Covid Data

» Understand how individual’s mortality and important biomarkers
vary as a function of ventilation initiation
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Challenges

» Causal inference is usually about population causal effect.
e Individual causal effect is unidentifiable in most cases.

> Informative patient heterogeneity in treatment assignment.

e Clinician’s tendency in making treatment decisions from
unobserved factors; we assume the existence of unobserved
time-invariant confounders.

e With unmeasured confounding, standard approaches in
longitudinal causal inference may lead to biased estimates. (Yang
and Lok, 2018)

» Unit fixed effects regression models are widely used to adjust for
unobserved time-invariant confounders

e Drawback: trade-off between causal dynamics and time-invariant
unobservables. (Imai and Kim, 2019)
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Contributions

Propose a Bayesian framework for quantifying the individual
counterfactual benefit of dynamic treatment regimes

» relaxes the no unmeasured confounders assumption

» summarizes the evidence relevant to clinical decisions of a single
patient

» defines the causal effect for a specific patient at a day t as a
functional of

e observed history of that patient up to day t' (¢’ < t)

e parameters estimated based on data from similar patients

e counterfactual paths of that patient during days (¢, ], accounting
for unobserved time-invariant confounders
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Notations
For patient / at day t,

> Y biomarker(s), i.e. continuous lung efficiency score
» E;: competing risk endpoints, i.e. death and discharge
» Aj: indicator of first-time ventilation

» V: baseline covariates
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Model Specification

Multivariate mixed model of time-varying components
Yi=fy(V, A 1:87, b ei)
A = fa(V, Air_1, Yir_1; B4 0
Ey = fe(V,Air_1, Yir_1; BE, bF)
(bY, b2, bE) ~ MVN(0, G)

The random effect (b, b, bf) captures a vector of unobserved

time-invariant confounders in a flexible manner.
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Model Specification

Multivariate mixed model of time-varying components
Yi=fy(V, A 1:87, b ei)
A = fa(V, Air_1, Yir_1; B4 0
Ey = fe(V,Air_1, Yir_1; BE, bF)
(bY, b2, bE) ~ MVN(0, G)
The random effect (b, b, bf) captures a vector of unobserved

time-invariant confounders in a flexible manner.
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Model Specification

Why multivariate mixed model?

» Repeated measurement makes it possible to partially inform
individual heterogeneity that arises from unobserved covariates

» Connects the progression of biomarkers, events, and treatment
assignments

Difficulties

» Estimation of patient heterogeneity usually uses complete history
information

» Longitudinal causal estimation only uses up-to-date history
information to infer on future counterfactuals
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Model Estimation
Obtain posterior estimates of population level parameters
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Figure: Information flow in the estimation of G
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A “G-computation” Approach

Posterior sampling of individual counterfactual trajectories under a

treatment regime of interest

Given history (Ej1, Yi1, Ait, Ei2, Yi2), regime (A1, Ajp) = (a1, a) = a
E; N E; Ei3(a)

Py
Y /

Figure: Information flow in computing potential outcomes

» Real-time update of random effect estimation

» Conditional on treatment heterogeneity b? for the identifiability of individualized
treatment effect based on the assumed DAG
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A “G-computation” Approach

Posterior sampling of individual counterfactual trajectories under a
treatment regime of interest
Given history (Ej1, Yi1, Ait, Ei2, Yi2), regime (A1, Ajp) = (a1, a) = a

E‘Ll N EzZ - Ez3(ﬁ)

Figure: Information flow in computing potential outcomes
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Causal Comparison

Compute target quantity for treatment regime comparison as a
functional of the posterior counterfactual trajectories under different
treatment options

» Example: Contrasts of cumulative hazards between two
treatment regimes.
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Preliminary Resuts

Simulated Trajectories and Events between Day 13 and Day 24 (var(b4) = 0.01, Nyost = 4000)
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Figure: Venting the person on day 12 versus always no ventilation
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Preliminary Resuts

Log Ratio of Cumulative Events between Day 13 and Day 24 (N5 = 4000)
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