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Motivating Work

» Bayesian modeling of state transitions over time under different dynamic
regimes

» Causal inference using G computation algorithm (GCA)

» “What would have happened if the target population followed a certain regime
over time?”

» Requires correct specification of predictive models

» Incorporate Bayesian additive regression trees (BART) as predictive models

» Challenge: fitting multinomial probit BART (MPBART) for outcome models
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Motivating Work

From

http://health2615.rssing.com/chan-17973612/all$_$p5.html
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Operationalized outcome progression through the HIV care cascade:
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Data: EHRs from AMPATH
P> S: Outcome

S € {0 Disengaged, 1 Engaged, 2 Transferred, 3 Died}
P A: Treatment status

v

X: Time varying confounders
V: Baseline covariates
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Data Excerpt

S A
mylD  Time | Outcome onARV| CD4 Log Age Male  Year Travel WHO Married  Height Log Log VLO
Update CD4+1 Enrol Time  Stage Weight  VL+1
34 0 1 0 1 6.293 33.421 0 2008 3 2 0 163 3.738 NA 0
34 200 1 0 0 6.293 33.421 0 2008 3 2 0 163 3.738 NA 0
34 400 2 0 0 6.293 33.421 0 2008 3 2 0 163 3.738 NA 0
50001 O 1 0 1 2.833 33927 O 2011 2 4 0 NA NA NA 0
50001 200 1 1 0 2.833 33927 O 2011 2 4 0 NA NA NA 0
50001 400 3 1 0 2.833 33927 O 2011 2 4 0 NA NA NA 0
60050 0O 1 0 1 3.611 22828 0 2012 2 NA 0 NA 3.871 NA 0
60050 200 0 0 0 3.611 22828 O 2012 2 NA 0 NA 3.871 NA 0
60050 400 1 1 0 3.611 22828 0 2012 2 NA 0 NA 3.871 NA 0
60050 600 1 1 1 3.829 22828 0 2012 2 NA 0 NA 3.871 NA 0
60050 800 0 1 0 3.829 22828 0 2012 2 NA 0 NA 3.871 NA 0
60050 1000 | O 1 0 3.829 22828 0 2012 2 NA 0 NA 3.871 NA 0
60050 1200 | O 1 0 3.829 22828 0 2012 2 NA 0 NA 3.871 NA 0

Application goal: Evaluate the causal effectiveness of different HIV treatment

initiation policies on the progression of patients retention and survival through
the HIV care cascade.
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Causal structural model to compare treatment policies

» Structural model

S; = state membership at time 1

Ao = treatment assigned at time 0

aj = q(Xo, V) where q is a regime function
P(S7) = distribution of Sy under regime q

» For two different regimes q; and g, at time 1, we want to compare
P(ST) and P(S%)
» Example: ‘treat immediately’ is the regime

g=1 = a =(1,1,1,...,1)

(Y. Xu, Brown University) Accelerated MPBART July 28th 2019 5/31



GCA: Use Observed-data Models as Plug-ins
Target: P(S])

P(S‘?) = P(S1‘A0 = agax17X07 V)

(X1| - aga)(O? V)
P(Xo, V)
d(Xi, Xo, V)

With certain assumptions (causal network, GCA assumptions, predictive models),
@ Plug in fitted models for (X;, Sy):
P(Xi]|Ao, X0, Vi 7), P(S1|Ao, X1, Xo, V; 0)
@ Fix treatment a] under regime g

© Average over the empirical baseline distribution of specific population of
interest
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Focus: BART for Multinomial Models

The GCA can be extended to longitudinal data with discrete time (Young et al
2011); here we focus on outcome models at each time k:
P(Sk|Ak_1, Xk, Sk_1, V; )

Two predominant ways for fitting multinomial outcomes:

» Multinomial probit (MNP) (Imai and van Dyk 2005)
» Multinomial logistic (MNL)

o ) = = DA
(Y. Xu, Brown University) Accelerated MPBART



Focus: BART for Multinomial Models

0 is the reference level,

s

Under the framework of latent variable model for outcome S € {0, 1, 2,3}, when
k if max(W1, Wg, W3) = Wk >0

if max(Wy, Wa, W3) < 0,
latent utilities (W;, Wa, Ws) = (Gi, Gz, Gs) + €, Where Gj(X; 0) = X6;
» MNP: e ~ MVN(0,Y)

» MNL: ¢, ~ Logistic(0,1) fork =1,2,3

o ) = E DAl
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Focus: BART for Multinomial Models

» MPBART (Kindo et al 2016): G;(X;6) = >_, 9(X; 0j) sum of binary trees
» Binary trees g(-; 6j)

7. FIGURES

root node
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Challenges

» Sensitive to choice of reference level

» Fail to achieve MCMC convergence under unbalanced categories
on the covariance matrix

Solution: Sample the sum-of-trees based on latent utilities W under a constraint

o =3 = E 9Dacr
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Challenges
Diagnostic plots of MPBART (Kindo et al 2016) for P(Ss| X3, F2, 0)
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MPBART

» Correlation among alternatives is captured by ¥

» |dentifiability issue: for a constant « > 0, unconstrained latent utilities

W =aW ~ MVN(G(X;6),%), where
G(X;0) =aG(X;0) = &= abfor MNP
Y =Y

= S(W) = S(W).

» Constraint on latent utilities W: trace(X) = C — 1,
where C is the number of categories

» Sample « jointly as a working parameter (marginal augmentation)

=} (=)
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MPBART

For any variable 6:

» 0 - unconstrained counterpart;
» 0* - intermediate draw.

Gibbs sampling of (W, 6, %)
Algorithm 1 (Kindo et al 2016):

@ Sample W, o*|S, u, X =

~

W=aoW,5 = (a)?%
© Sample I|W.5. X = ji=G(X;0), "

fifar

Q@ Sample S a|lW —ji = p=jifa, L =5%/0? and W = u* + W=E,
o =3 = E 9Dacr



MPBART

Algorithm 2 (Accelerated MPBART):

Change Step 2 of Algorithm 1

W, 5. X = j=G(X;0),u =ji/a*
into
W, . X = p ' =G(X;0),0i=a"u"

R package available at https://github.com/yizhenxu/GcompBART
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MPBART

— this may cause trouble to model convergence
@ W is unstable

Intuition: Algorithm 1 fits 6 to unconstrained latent utilities W

© sum-of-trees parameters ¢ are fitted by stochastic search = 0 # a*6
Constrained latent utilities W are more stable = Algorithm 2
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Simulation

(Xi,...,Xs) ~ Uniform(0,1)
Xs ~ Uniform(0, 2)
Gy = 15sin(7X;i X2) + (Xz — 0.5)> — 10X, — 5X5
Go = (Xz —0.5)% — Xy X5 +4X5
G = (G, G). = <o1,5 015>
W = (W;, We)T ~ MVN(G, X)
{ if Wy > We, Wy >0

S=<2 ifNW2 > max{OJ Wi}

3 fW;<0and W>, <0

The proportion of S = 3 is less than 4%, presenting an extremely imbalanced
outcome distribution.

o> S = = T 9ac
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Accuracy Measures

» J posterior samples, N subjects

predictions,

» Posterior mean accuracy: the average accuracy across all posterior

T .,a0) _ o
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Simulation

Algorithm  Train

Test
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Figure: Plot of average tree depth for each latent utility as time series.
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Application - AMPATH Data
Engagement in care problem at t = 1

Algorithm Train  Test
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Method

EHRs

Step 1: Model estimations on 50,000 subjects

Step 2: Model validation on 10,000 subjects

Step 3: Bayesian GCA simulation on 30,000 subjects

o ) = = DA
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Validation of Predictive Models

Posteriors

Posteriors
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Counterfactual Simulation
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Figure: Predicted marginal state probabilities for an out-of-sample 30,000 individuals
engaged in AMPATH-supported HIV care at baseline, under treat when CD4 drops below
350 cells/mm? and treat immediately policies (in the order of display, left to right).
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Comparison of Causal Effectiveness

Treat Immediately v.s. Treat when CD4<350 cells/mm®
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End

Thank you

Collaborators:

» Liu, Tao - Brown University

» Daniels, Michael - University of Florida
Marshall, Brandon - Brown University
Kantor, Rami - Brown University
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Model Structure for the Motivating Application

[X1 |A07 XOJ 71]

[81 |A07 X1 ) 01]
W W [Xo| A1, X4, 1,72
A A

0\ 1\ 2\\ [S2]| A1, X2, Si, 62]
X, :
[Xt|At—1 , Xi—1, St-1, %]
Assumptions: [StlAe1, X, Sov, 01
> NO unmeasured Confounders Baseline covariates V is left out for simplicity.
» First-order Markov dependence
for Sand X
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Marginal Augmentation

Imai and van Dyk (2005)

» Data augmentation (DA) algorithm: sample p(¢, W|S) by iterative posterior
sampling of p(¢|W, S) and p(W|0, S)

» Marginal augmentation: L(0|S) « [/ p(S, W0, )p(«|8)da]dW; Meng and
van Dyk (1999) theoretically proved that this can improve the geometric rate
of convergence of the DA algorithm

» “using unidentifiable parameters within a Markov chain is the key to the
substantial computational gains offered by marginal augmentation.”

» The constraint on ¥ is made to be sure the model parameters (0, Y) are
identified; parameter « is unidentifiable. Even with the constraint, model
parameters may be unidentifiable without certain conditions on X and S.
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Connection of our Proposal to Imai and van Dyk (2005)

» Imai and van Dyk (2005) provided two algorithms (1" and 2’) for implementing
MNP, and they expected algorithm 1’ to outperform algorithm 2’, because
algorithm 1’ is a complete marginal augmentation procedure while 2’ is not.

» In Step 2, algorithm 1’ updates « first and then samples ¢ conditional on the
updated «, while algorithm 2’ samples 6 without conditioning on «

» Kindo et al (2016) employed the algorithm 1’ for extending MNP to
incorporate BART, skipping the sampling of « in Step 2 and updating 6
conditional the « from Step 1; they called this sampling procedure a “semi
marginal augmentation”

» Our proposal is somehow similar to the algorithm 2’ of Imai and van Dyk
(2005), sampling ¢ from its conditional distribution that does not depend on
a, i.e. updating 6 conditional on the constrained latent utilities W
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Algoxithm 12

Connection of our Proposal to Imai and van Dyk (2005)

Algovithm 3’
Stepl  Sxepd  Stop Stepl St Stop D
(w,d) (B, 0 s (W) £ o
v ¥ v v v
¥ 0 o W «
v v
W, Z) (i, Z)
Algoriehm 1 ( Kindo et al) Algorithm 2. (Proposal)
Step L Step L Step 3 Step L Step L Step 3
(V) ;] £ B #
v v v
¥ o o
v v
i, Z)

(w, Z)
o ) = = DA
(Y. Xu, Brown University) Accelerated MPBART




MNP

Gibbs sampling of (W,0. )

Linear model specification: G(X; 6) = X0
Algorithm 0

Q@ (W,0?)|S,G(X;0),%, set W =aW
Q (4,0)|W,X,02 X, setd =0/a

©Q £.a)|W-G(X;0),set W=W/aand L =5 /a2
G(X;0) = aG(X; )

o ) = = E DAl
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Bayesian GCA Simulation
Specify predictive models attime t € {1,..., K} using BART,

P(Xt| Ft-1,7) (2)
P(Si| Xt, Fi-1,0) (3)

Fi_1: observed history up to time t — 1.
@ Posterior sampling of parameters (v*, 6*) from (2) and (3)

© Use the fitted models as generative components.
Sequentially generate counterfactual paths under certain treatment regime

h(-):
ai_1 = h(F{y) (4)
X; ~ P(XiFiq,77) (5)
s; ~ P(Si| Xt = X, Fiy, 07), (6)
F{_4: counterfactual history up to time t — 1; F; represents baseline
covariates.
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Inclusion Proportions of Covariates
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