Accelerated Multinomial Probit Bayesian Additive Regression Trees

Yizhen Xu Advisor: Joseph Hogan

Brown University

July 28th, 2019

Motivating Work

- Bayesian modeling of state transitions over time under different dynamic regimes
- Causal inference using G computation algorithm (GCA)
 - "What would have happened if the target population followed a certain regime over time?"
 - Requires correct specification of predictive models
 - ▶ Incorporate Bayesian additive regression trees (BART) as predictive models
- ► Challenge: fitting multinomial probit BART (MPBART) for outcome models

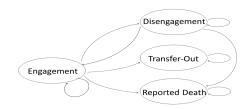
Motivating Work

From

http://health2615.rssing.com/chan-17973612/all\$_\$p5.html

The **LINKAGES** Prevention, Care and Treatment Cascade

Operationalized **outcome** progression through the HIV care cascade:



- ▶ Data: EHRs from AMPATH
- S: Outcome S ∈ {0 Disengaged, 1 Engaged, 2 Transferred, 3 Died}
- A: Treatment status
- X: Time varying confounders
- V: Baseline covariates

Data Excerpt

		S	Α)	<						V				
myID	Time	Outcome	onARV	CD4	Log	Age	Male	Year	Travel	WHO	Married	Height	Log	Log	VL0
				Update	CD4+1	_		Enrol	Time	Stage			Weight	VL+1	
34	0	1	0	1	6.293	33.421	0	2008	3	2	0	163	3.738	NA	0
34	200	1	0	0	6.293	33.421	0	2008	3	2	0	163	3.738	NA	0
34	400	2	0	0	6.293	33.421	0	2008	3	2	0	163	3.738	NA	0
50001	0	1	0	1	2.833	33.927	0	2011	2	4	0	NA	NA	NA	0
50001	200	1	1	0	2.833	33.927	0	2011	2	4	0	NA	NA	NA	0
50001	400	3	1	0	2.833	33.927	0	2011	2	4	0	NA	NA	NA	0
60050	0	1	0	1	3.611	22.828	0	2012	2	NA	0	NA	3.871	NA	0
60050	200	0	0	0	3.611	22.828	0	2012	2	NA	0	NA	3.871	NA	0
60050	400	1	1	0	3.611	22.828	0	2012	2	NA	0	NA	3.871	NA	0
60050	600	1	1	1	3.829	22.828	0	2012	2	NA	0	NA	3.871	NA	0
60050	800	0	1	0	3.829	22.828	0	2012	2	NA	0	NA	3.871	NA	0
60050	1000	0	1	0	3.829	22.828	0	2012	2	NA	0	NA	3.871	NA	0
60050	1200	0	1	0	3.829	22.828	0	2012	2	NA	0	NA	3.871	NA	0

Application goal: Evaluate the causal effectiveness of different HIV treatment initiation policies on the progression of **patients retention and survival** through the HIV care cascade.

Causal structural model to compare treatment policies

Structural model

 $m{S_1} = ext{state membership at time 1}$ $A_0 = ext{treatment assigned at time 0}$ $a_0^q = q(X_0, V) ext{ where } q ext{ is a regime function}$ $P(m{S_1}^q) = ext{distribution of } m{S_1} ext{ under regime } q$

For two different regimes q_1 and q_2 at time 1, we want to compare

$$P(S_1^{q_1})$$
 and $P(S_1^{q_2})$

Example: 'treat immediately' is the regime

$$q \equiv 1 \quad \Rightarrow \quad \overline{a}_{K}^{q} = (1, 1, 1, \dots, 1)$$

GCA: Use Observed-data Models as Plug-ins

Target: $P(S_1^q)$

$$P(S_1^q) = \int P(S_1|A_0 = a_0^q, X_1, X_0, V)$$
 $P(X_1|A_0 = a_0^q, X_0, V)$
 $P(X_0, V)$
 $d(X_1, X_0, V)$

With certain assumptions (causal network, GCA assumptions, predictive models),

- Plug in fitted models for (X_1, S_1) : $P(X_1|A_0, X_0, V; \gamma), P(S_1|A_0, X_1, X_0, V; \theta)$
- 2 Fix treatment a_0^q under regime q
- Average over the empirical baseline distribution of specific population of interest

6/31

Focus: BART for Multinomial Models

The GCA can be extended to longitudinal data with discrete time (Young et al. 2011); here we focus on outcome models at each time k:

$$P(S_k|\overline{A}_{k-1}, \overline{X}_k, \overline{S}_{k-1}, V; \theta)$$

Two predominant ways for fitting multinomial outcomes:

- Multinomial probit (MNP) (Imai and van Dyk 2005)
- Multinomial logistic (MNL)

Focus: BART for Multinomial Models

Under the framework of latent variable model for outcome $S \in \{0, 1, 2, 3\}$, when 0 is the reference level,

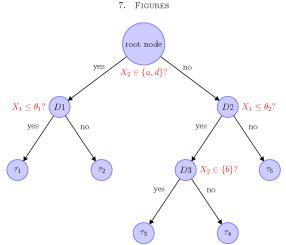
$$S = \begin{cases} k & \text{if } \max(W_1, W_2, W_3) = W_k > 0 \\ 0 & \text{if } \max(W_1, W_2, W_3) < 0, \end{cases}$$

latent utilities $(W_1, W_2, W_3) = (G_1, G_2, G_3) + \epsilon$, where $G_j(X; \theta) = X\theta_j$,

- ▶ MNP: $\epsilon \sim MVN(\mathbf{0}, \mathbf{\Sigma})$
- ▶ MNL: $\epsilon_k \sim Logistic(0,1)$ for k = 1,2,3

Focus: BART for Multinomial Models

- ▶ MPBART (Kindo et al 2016): $G_j(X;\theta) = \sum_k g(X;\theta_{jk})$ sum of binary trees
- ▶ Binary trees $g(\cdot; \theta_{ik})$



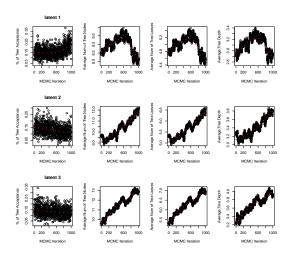
Challenges

- Sensitive to choice of reference level
- ► Fail to achieve MCMC convergence under unbalanced categories

Solution: Sample the sum-of-trees based on latent utilities W under a constraint on the covariance matrix Σ

Challenges

Diagnostic plots of MPBART (Kindo et al 2016) for $P(S_3|X_3, \mathcal{F}_2, \theta)$



- Correlation among alternatives is captured by Σ
- ▶ Identifiability issue: for a constant $\alpha > 0$, unconstrained latent utilities

$$\tilde{W} = \alpha W \sim MVN(G(X; \tilde{\theta}), \tilde{\Sigma}), \quad \text{where}$$
 $G(X; \tilde{\theta}) = \alpha G(X; \theta) \Rightarrow \tilde{\theta} = \alpha \theta \text{ for MNP}$
 $\tilde{\Sigma} = \alpha^2 \Sigma$

$$\Rightarrow S(W) = S(\tilde{W}).$$

- ▶ Constraint on latent utilities W: trace(Σ) = C 1, where C is the number of categories
- ▶ Sample α jointly as a **working parameter** (marginal augmentation)

12 / 31

(Y. Xu, Brown University) Accelerated MPBART July 28th 2019

For any variable θ :

- \blacktriangleright $\tilde{\theta}$ unconstrained counterpart;
- $ightharpoonup \theta^*$ intermediate draw.

Gibbs sampling of (W, θ, Σ)

Algorithm 1 (Kindo et al 2016):

- Sample $W, \alpha^* | S, \mu, \Sigma \Rightarrow \tilde{W} = \alpha^* W, \tilde{\Sigma} = (\alpha^*)^2 \Sigma$
- **2** Sample $\tilde{\theta} | \tilde{W}, \tilde{\Sigma}, X \Rightarrow \tilde{\mu} = G(X; \tilde{\theta}), \mu^* = \tilde{\mu}/\alpha^*$
- $\textbf{3} \ \, \mathsf{Sample} \ \, \tilde{\Sigma}, \alpha | \, \tilde{\pmb{W}} \tilde{\mu} \quad \Rightarrow \quad \mu = \tilde{\mu}/\alpha, \, \Sigma = \tilde{\Sigma}/\alpha^2, \, \mathsf{and} \ \, \pmb{W} = \mu^* + \frac{\tilde{\pmb{W}} \tilde{\mu}}{\alpha}.$

Algorithm 2 (Accelerated MPBART):

Change Step 2 of Algorithm 1

$$\tilde{ heta}| ilde{W}, \tilde{\Sigma}, X \quad \Rightarrow \quad \tilde{\mu} = extbf{G}(extbf{X}; ilde{ heta}), \mu^* = ilde{\mu}/lpha^*$$
 into

$$\theta | W, \Sigma, X \quad \Rightarrow \quad \mu^* = G(X; \theta), \tilde{\mu} = \alpha^* \mu^*$$

R package available at https://github.com/yizhenxu/GcompBART

Intuition: Algorithm 1 fits θ to **unconstrained** latent utilities \tilde{W} – this may cause trouble to model convergence

- \bullet \tilde{W} is unstable
- 2 sum-of-trees parameters θ are fitted by stochastic search $\Rightarrow \tilde{\theta} \neq \alpha^* \theta$

Constrained latent utilities W are more stable \Rightarrow Algorithm 2

Simulation

$$\begin{split} &(X_1,\dots,X_5) \sim \mathsf{Uniform}(0,1) \\ &X_6 \sim \mathsf{Uniform}(0,2) \\ &G_1 = 15\sin(\pi X_1 X_2) + (X_3 - 0.5)^2 - 10X_4 - 5X_5 \\ &G_2 = (X_3 - 0.5)^2 - X_4 X_5 + 4X_6 \\ &G^T = (G_1,G_2), \Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} \\ &\tilde{W} = (\tilde{W}_1,\tilde{W}_2)^T \sim \mathsf{MVN}(G,\Sigma) \\ &S = \begin{cases} 1 & \text{if } \tilde{W}_1 > \tilde{W}_2, \tilde{W}_1 \geq 0 \\ 2 & \text{if } \tilde{W}_2 \geq \max\{0,\tilde{W}_1\} \\ 3 & \text{if } \tilde{W}_1 < 0 \text{ and } \tilde{W}_2 < 0 \end{cases} \end{split}$$

The proportion of S=3 is less than 4%, presenting an extremely imbalanced outcome distribution.

(Y. Xu, Brown University)

Accuracy Measures

- ► J posterior samples, N subjects
- Posterior mean accuracy: the average accuracy across all posterior predictions,

$$\frac{1}{NJ}1\{\hat{S}_{i}^{(j)}=S_{i}\},\tag{1}$$

(Y. Xu, Brown University)

Simulation

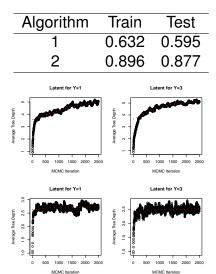


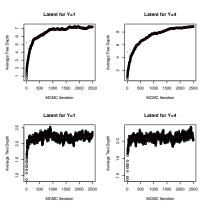
Figure: Plot of average tree depth for each latent utility as time series.

18 / 31

Application - AMPATH Data

Engagement in care problem at t = 1

Algorithm	Train	Test
1	0.616	0.608
2	0.786	0.781



Method

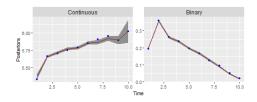
EHRs

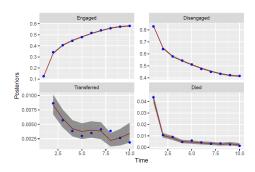
Step 1: Model estimations on 50,000 subjects

Step 2: Model validation on 10,000 subjects

Step 3: Bayesian GCA simulation on 30,000 subjects

Validation of Predictive Models





Counterfactual Simulation

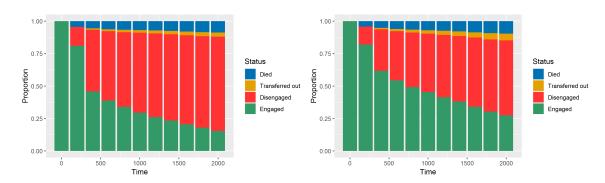
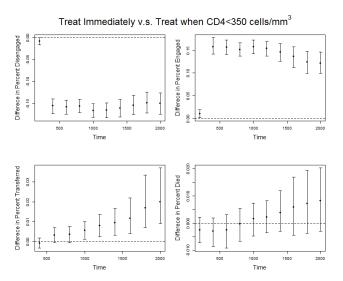


Figure: Predicted marginal state probabilities for an out-of-sample 30,000 individuals engaged in AMPATH-supported HIV care at baseline, under treat when CD4 drops below 350 cells/mm³ and treat immediately policies (in the order of display, left to right).

22 / 31

Comparison of Causal Effectiveness

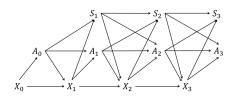


Thank you

Collaborators:

- Liu, Tao Brown University
- Daniels, Michael University of Florida
- Marshall, Brandon Brown University
- Kantor, Rami Brown University
- Omodi, Victor Moi University / AMPATH
- Mwangi, Ann Moi University

Model Structure for the Motivating Application



Assumptions:

- No unmeasured confounders
- ► First-order Markov dependence for *S* and *X*

$$[X_{1}|A_{0}, X_{0}, \gamma_{1}]$$

$$[S_{1}|A_{0}, X_{1}, \theta_{1}]$$

$$[X_{2}|A_{1}, X_{1}, S_{1}, \gamma_{2}]$$

$$[S_{2}|A_{1}, X_{2}, S_{1}, \theta_{2}]$$

$$\vdots$$

$$[X_{t}|A_{t-1}, X_{t-1}, S_{t-1}, \gamma_{t}]$$

$$[S_{t}|A_{t-1}, X_{t}, S_{t-1}, \theta_{t}]$$

Baseline covariates V is left out for simplicity.

Marginal Augmentation

Imai and van Dyk (2005)

- ▶ Data augmentation (DA) algorithm: sample $p(\theta, W|S)$ by iterative posterior sampling of $p(\theta|W,S)$ and $p(W|\theta,S)$
- ▶ Marginal augmentation: $L(\theta|S) \propto \int [\int p(S, W|\theta, \alpha)p(\alpha|\theta)d\alpha]dW$; Meng and van Dyk (1999) theoretically proved that this can improve the geometric rate of convergence of the DA algorithm
- "using unidentifiable parameters within a Markov chain is the key to the substantial computational gains offered by marginal augmentation."
- ▶ The constraint on Σ is made to be sure the model parameters (θ, Σ) are identified; parameter α is unidentifiable. Even with the constraint, model parameters may be unidentifiable without certain conditions on X and S.

Connection of our Proposal to Imai and van Dyk (2005)

- ▶ Imai and van Dyk (2005) provided two algorithms (1' and 2') for implementing MNP, and they expected algorithm 1' to outperform algorithm 2', because algorithm 1' is a complete marginal augmentation procedure while 2' is not.
- ▶ In Step 2, algorithm 1' updates α first and then samples θ conditional on the updated α , while algorithm 2' samples θ without conditioning on α
- ▶ Kindo et al (2016) employed the algorithm 1' for extending MNP to incorporate BART, skipping the sampling of α in Step 2 and updating θ conditional the α from Step 1; they called this sampling procedure a "semi marginal augmentation"
- Our proposal is somehow similar to the algorithm 2' of Imai and van Dyk (2005), sampling θ from its conditional distribution that does not depend on α , i.e. updating θ conditional on the constrained latent utilities W

Connection of our Proposal to Imai and van Dyk (2005)

Algorithm 1'	Algorithm 2'					
Step 1 Step 2 Step 3 $(W,d) (\widetilde{\theta},d) \widetilde{\Sigma}$ $\widetilde{W} \qquad \theta \qquad d$ (W,Z)	Step 1 Step 2 Step 3 $(W,d) \tilde{\Xi} \qquad \Theta$ $\tilde{W} \qquad d$ (W, Z)					
Algorithm 1 (Kindo et a () Step 1 Step 2 Step 3 (W,d) & \tilde{	Algorithm 2 (Proposal) Step 1 Step 2 Step 3 (W, d)					

MNP

Gibbs sampling of (W, θ, Σ)

Linear model specification: $G(X; \theta) = X\theta$

Algorithm 0

- **1** $(W, \alpha^2)|S, G(X; \theta), \Sigma$, set $\tilde{W} = \alpha W$
- $(\tilde{\theta}, \alpha^2) | \tilde{W}, \Sigma, \alpha^2, X, \text{ set } \theta = \tilde{\theta}/\alpha$
- $\textcircled{3} \ (\tilde{\Sigma},\alpha^2)|\tilde{W}-G(X;\tilde{\theta}), \, \text{set} \, \, W=\tilde{W}/\alpha \, \, \text{and} \, \, \Sigma=\tilde{\Sigma}/\alpha^2.$

$$G(X; \tilde{\theta}) = \alpha G(X; \theta)$$

Bayesian GCA Simulation

Specify predictive models at time $t \in \{1, ..., K\}$ using BART,

$$P(X_t|\mathcal{F}_{t-1},\gamma) \tag{2}$$

$$P(S_t|X_t,\mathcal{F}_{t-1},\theta) \tag{3}$$

 \mathcal{F}_{t-1} : observed history up to time t-1.

- **①** Posterior sampling of parameters (γ^*, θ^*) from (2) and (3)
- Use the fitted models as generative components. Sequentially generate counterfactual paths under certain treatment regime h(·):

$$a_{t-1}^* = h(\mathcal{F}_{t-1}^*) \tag{4}$$

$$\mathbf{X}_t^* \sim P(\mathbf{X}_t | \mathcal{F}_{t-1}^*, \gamma_t^*) \tag{5}$$

$$s_t^* \sim P(S_t | X_t = x_t^*, \mathcal{F}_{t-1}^*, \theta_t^*),$$
 (6)

 \mathcal{F}_{t-1}^* : counterfactual history up to time t-1; \mathcal{F}_0^* represents baseline covariates.

Inclusion Proportions of Covariates

Outcome at t = 1

