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Motivation - Classification Rule
» Input X, binary output Y

» Based on weighted misclassification loss, develop a classification
rule Q(X) that classifies Y

» Q(X)=Q(X;V(;a),c)=1{¥(X;a) >c}
» Risk score V(X; «), threshold ¢
» We want to use Super Learner to get a risk score and minimize

the weighted misclassification risk (Vaart and Laan, 2006; Laan
and Polley, 2007)
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Motivation - Examples

» Kenyan clinical HIV data

e 899 complete cases; derived from three studies conducted at the
Academic Model Providing Access to Healthcare (AMPATH) in
Eldoret, Kenya (Mann et al. 2013; Diero et al. 2014; Brooks et al.
2016)

o Y: viral failure (VL > 1000 copies/ml)

o X: age, gender, nadir CD4, CD4, CD4 percent, adherence to ART,
time since starting current ART, and slope of CD4 percent
progression

» Wisconsin diagnostic breast cancer data
e 569 cases; available on UCI data repository

e Y: confirmatory diagnosis of breast cancer as either benign or
malignant

e X: 30 covariates derived from 10 cell image features
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Motivation - Problem

» Most applications weight false positives (FP) and false negatives
(FN) equally

» Viral failure classification in HIV treatment monitoring

e Viral load (VL) assessment may be limited by logistics, cost, and
technology

e Predict viral failure (VL > 1000 copies/ml) based on other clinical
markers

o FP: early treatment switching, higher toxicity, lower adherence,
greater costs, limited long term treatment options
e FN: drug resistence, increased morbidity and mortality

» Weighted misclassification loss: FP and FN are treated differently
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Thresholding

» Common approach: conditional thresholding

o Estimate risk score
e Set threshold conditional on the estimated risk score

» Our strategy: joint thresholding

e Simultaneous estimation of risk score and threshold under
weighted misclassification loss

e This joint estimation give more accurate estimate and improvement
to overall risk compared to the common approach
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Weighted Misclassification Loss (WML)

Recall:
» Rule Q(X) = 1{¥(X;a) > c}
» Qutcome Y

Loss:

Ly(Y,Q(X)) =21{Q(X)=0,Y =1} + (1 = N)1{Q(X) =1,Y =0}
A is a user specified weight that governs FP and FN
Risk:

R(Y, QX)) = A\P(Q(X) =0,Y = 1)+ (1 - \)P(Q(X) =1,Y = 0)
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Empirical Weighted Misclassification Risk

RA(Y,¥(X;a),c) = %iAI{W(Xi;a) <cYi=1}
i=1
+ (1 = NI{V(X;a) >c,Y; =0}

Find o and ¢ that minimize the empirical risk function
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SL with Conditional Thresholding for Classification

1. Split data into V blocks

Data
(. X)
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SL with Conditional Thresholding for Classification

1. Split data into V blocks

0. Train candidate learners
on the entire dataset
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SL with Conditional Thresholding for Classification

1. Split data into V blocks

0. Train candidate learners
on the entire dataset
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SL with Joint Thresholding for Classification

1. Split data into V blocks
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SL with Joint Thresholding for Classification

1. Split data into V blocks
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SL with Joint Thresholding for Classification

1. Split data into V blocks

0. Train candidate learners
on the entire dataset
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Empirical Weighted Misclassification Risk

n
R\(Y,V(X;a),c) = %Z)\]I{W(X,-; a)<c Yi=1}
i=1

+ (1 = NHV(Xi) > ¢, Yi =0}

» Optimizing counts: computationally a very difficult problem

e Lack of smoothness and convexity

o Numerous optima
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Minimization of WMR

» Some existing methods:

o Approximate the WML with smooth solvable loss function: integrals
of beta distribution to approximate the indicator functions in WML
(Buja et al, 2005)

e Hierarchical mathematical programming: linear program with
equilibrium constraints (Mangasarian, 1994) for total
misclassification loss

e Hybrid accelerating algorithms: convex surrogate max(1 + x, 0) of
indicator function 1(x > 0) (Chen and Mangasarian, 1996)
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Minimization of WMR

» Our strategy

o Direct search methods for global optimization

@ Controlled random search (Kaelo and Dixon, 2006)

@ Key: transform the problem into bounded region optimization

o Two-step methods

@ Key: use a convex and continuous surrogate loss for estimating &
o Estimate ¢ based on &

@ Can be extended to iterative procedures when the surrogate loss
contains ¢
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Simulations

» Settings:

o Observe the variables used in outcome generation

@ Observe highly nonlinear transformations of the variables used in
outcome generation

» Joint thresholding obviously outperforms conditional thresholding
in the second setting; the two methods do not differ much in the
first setting

» More candidate learners decrease the discrepancy

» Two-step and controlled random search have similar results; this
have implications for computing
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CV Weighted Misclassification Risk Stratified by SL Library Size K

Kenyan Study (K=4)
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CV Weighted Misclassification Risk Stratified by SL Library Size K

Kenyan Study (K=8)
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CV Weighted Misclassification Risk Stratified by SL Library Size K

Breast Cancer Study (K=4)
0.04-

0.03-

risk

0.02-
0.01-

0.00-
0.00 0.25 0.50 0.75 1.00
s
Approach — Conditional Thresholding — CRS Minimization — Two-Step Minimization
(Brown University)

JSM 2017

July 30th 2017 22/32



CV Weighted Misclassification Risk Stratified by SL Library Size K

Breast Cancer Study (K=8)
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Results

Kenyan HIV data

CT: conditional thresholding

CRS: joint thresholding using controlled random search
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Results

(Brown University)
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Discussions

» Our work provides a general framework for using ensemble
learners for binary classification and has the potential to be
extended to more general threshold-based classification

» Joint thresholding performs as well as or better than the
conditional thresholding approach in terms of properly estimating
CV weighted misclassification risks

» In our analysis, difference between thresholding methods is
smaller for larger SL library

» From Bayes’ rule, optimal threshold at 1 — A when
V(X) = P(Y = 1|X). Threshold estimation is still very important!

» We anticipate the performance of our method to be comparable
to threshold estimation based on CV SL predictions
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Thank you!
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Density Curves of SL Prediction, 10 fold CV-SL, m(Z; &) on BRCA Data
Thresholds Estimated at A = 0.8 (K = 8)
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