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Motivation - Classification Rule

I Input X , binary output Y

I Based on weighted misclassification loss, develop a classification
rule Q(X ) that classifies Y

I Q(X ) = Q(X ; Ψ(·;α), c) = 1{Ψ(X ;α) ≥ c}

I Risk score Ψ(X ;α), threshold c

I We want to use Super Learner to get a risk score and minimize
the weighted misclassification risk (Vaart and Laan, 2006; Laan
and Polley, 2007)
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Motivation - Examples

I Kenyan clinical HIV data

899 complete cases; derived from three studies conducted at the
Academic Model Providing Access to Healthcare (AMPATH) in
Eldoret, Kenya (Mann et al. 2013; Diero et al. 2014; Brooks et al.
2016)

Y: viral failure (VL > 1000 copies/ml)

X: age, gender, nadir CD4, CD4, CD4 percent, adherence to ART,
time since starting current ART, and slope of CD4 percent
progression

I Wisconsin diagnostic breast cancer data

569 cases; available on UCI data repository

Y: confirmatory diagnosis of breast cancer as either benign or
malignant

X: 30 covariates derived from 10 cell image features
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Motivation - Problem

I Most applications weight false positives (FP) and false negatives
(FN) equally

I Viral failure classification in HIV treatment monitoring

Viral load (VL) assessment may be limited by logistics, cost, and
technology

Predict viral failure (VL > 1000 copies/ml) based on other clinical
markers

FP: early treatment switching, higher toxicity, lower adherence,
greater costs, limited long term treatment options

FN: drug resistence, increased morbidity and mortality

I Weighted misclassification loss: FP and FN are treated differently
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Thresholding

I Common approach: conditional thresholding

Estimate risk score

Set threshold conditional on the estimated risk score

I Our strategy: joint thresholding

Simultaneous estimation of risk score and threshold under
weighted misclassification loss

This joint estimation give more accurate estimate and improvement
to overall risk compared to the common approach
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Weighted Misclassification Loss (WML)

Recall:
I Rule Q(X ) = 1{Ψ(X ;α) ≥ c}
I Outcome Y

Loss:

Lλ(Y ,Q(X )) = λ1{Q(X ) = 0,Y = 1}+ (1− λ)1{Q(X ) = 1,Y = 0}

λ is a user specified weight that governs FP and FN

Risk:

Rλ(Y ,Q(X )) = λP(Q(X ) = 0,Y = 1) + (1− λ)P(Q(X ) = 1,Y = 0)
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Empirical Weighted Misclassification Risk

R̂λ(Y ,Ψ(X ;α), c) =
1
n

n∑
i=1

λ1{Ψ(Xi ;α) < c,Yi = 1}

+ (1− λ)1{Ψ(Xi ;α) ≥ c,Yi = 0}

Find α and c that minimize the empirical risk function
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SL with Conditional Thresholding for Classification
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SL with Conditional Thresholding for Classification
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SL with Conditional Thresholding for Classification
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SL with Conditional Thresholding for Classification
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SL with Conditional Thresholding for Classification
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SL with Joint Thresholding for Classification
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SL with Joint Thresholding for Classification
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SL with Joint Thresholding for Classification
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Empirical Weighted Misclassification Risk

R̂λ(Y ,Ψ(X ;α), c) =
1
n

n∑
i=1

λ1{Ψ(Xi ;α) < c,Yi = 1}

+ (1− λ)1{Ψ(Xi ;α) ≥ c,Yi = 0}

I Optimizing counts: computationally a very difficult problem

Lack of smoothness and convexity

Numerous optima
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Minimization of WMR

I Some existing methods:

Approximate the WML with smooth solvable loss function: integrals
of beta distribution to approximate the indicator functions in WML
(Buja et al, 2005)

Hierarchical mathematical programming: linear program with
equilibrium constraints (Mangasarian, 1994) for total
misclassification loss

Hybrid accelerating algorithms: convex surrogate max(1 + x ,0) of
indicator function 1(x > 0) (Chen and Mangasarian, 1996)
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Minimization of WMR

I Our strategy

Direct search methods for global optimization

Controlled random search (Kaelo and Dixon, 2006)

Key: transform the problem into bounded region optimization

Two-step methods

Key: use a convex and continuous surrogate loss for estimating α̃

Estimate c̃ based on α̃

Can be extended to iterative procedures when the surrogate loss
contains c
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Simulations

I Settings:

Observe the variables used in outcome generation

Observe highly nonlinear transformations of the variables used in
outcome generation

I Joint thresholding obviously outperforms conditional thresholding
in the second setting; the two methods do not differ much in the
first setting

I More candidate learners decrease the discrepancy

I Two-step and controlled random search have similar results; this
have implications for computing
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CV Weighted Misclassification Risk Stratified by SL Library Size K
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CV Weighted Misclassification Risk Stratified by SL Library Size K

(Brown University) JSM 2017 July 30th 2017 21 / 32



CV Weighted Misclassification Risk Stratified by SL Library Size K
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CV Weighted Misclassification Risk Stratified by SL Library Size K
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Results
Kenyan HIV data
CT: conditional thresholding
CRS: joint thresholding using controlled random search

λ = .2
CT CRS

α̂random forest 0.11 0.11
α̂logistic regression 0 0
α̂quadratic splines 0.42 0.42
α̂CART 0 0
α̂10-NN 0.20 0.20
α̂generalized boosting 0.27 0.27
α̂SVM 0 0
α̂Bagging 0 0
ĉ 0.62 0.73
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Results

λ = .8
CT CRS

α̂random forest 0.11 0.04
α̂logistic regression 0 0.19
α̂quadratic splines 0.42 0.16
α̂CART 0 0.33
α̂10-NN 0.20 0.01
α̂generalized boosting 0.27 0.06
α̂SVM 0 0.12
α̂Bagging 0 0.08
ĉ 0.16 0.18
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Discussions

I Our work provides a general framework for using ensemble
learners for binary classification and has the potential to be
extended to more general threshold-based classification

I Joint thresholding performs as well as or better than the
conditional thresholding approach in terms of properly estimating
CV weighted misclassification risks

I In our analysis, difference between thresholding methods is
smaller for larger SL library

I From Bayes’ rule, optimal threshold at 1− λ when
Ψ(X ) = P(Y = 1|X ). Threshold estimation is still very important!

I We anticipate the performance of our method to be comparable
to threshold estimation based on CV SL predictions
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Thank you!

(Brown University) JSM 2017 July 30th 2017 27 / 32



Acknowledgment

I Joseph Hogan (Advisor)

I Tao Liu (Co-advisor)

I Rami Kantor

I Michael Daniels

I Allison Delong

Funding: NIH grants R01-AI-108441, P30-AI-42853

(Brown University) JSM 2017 July 30th 2017 28 / 32



References

I A.W. van der Vaart, S. Dudoit, M.J. van der Laan. "Oracle Inequalities for
Multi-fold Cross Validation" (2006).

I Asuncion, Arthur, and David Newman. "UCI Machine Learning Repository"
(2007).

I K. Brooks, L. Diero, A. DeLong, M. Balamane, M. Reitsma, E. Kemboi, M.
Orido, W. Emonyi, M. Coetzer, J. Hogan and others "Treatment failure and drug
resistance in HIV-positive patients on Tenofovir-based first-line antiretroviral
therapy in western Kenya" (2016).

I A. Buja, W. Stuetzle, Y. Shen. "Loss Functions for Binary Class Probability
Estimation and Classification: Structure and Applications" (2005).

I C. Chen, O.L. Mangasarian. "Hybrid Misclassification Minimization" (1996).

I L. Diero, A. DeLong, L. Schreier, E. Kemboi, M. Orido, M. Rono. "High HIV
Resistance and Mutation Accrual at low Viral Loads upon second Line Failure in
western Kenya" (2014).

(Brown University) JSM 2017 July 30th 2017 29 / 32



References

I M. Mann, L. Diero, E. Kemboi, F. Mambo, M. Rono, W. Injera, A. Delong, L.
Schreier, K.W. Kaloustian, J. Sidle and others. "Antiretroviral treatment
interruptions induced by the Kenyan postelection crisis are associated with
virological failure" (2013).

I E.C. Polley, M.J. van der Laan. "Super Learner" (2007).

I E.C. Polley, M.J. van der Laan. "Super Learner in Prediction" (2010).

I O.L. Mangasarian. "Misclassification Minimization" (1994).

I P. Kaelo, M.M. Dixon. "Some Variants of the Controlled Random Searchh
Algorithm for Global Optimization" (2006).

(Brown University) JSM 2017 July 30th 2017 30 / 32



Density Curves of SL Prediction, 10 fold CV-SL, m(Z ; α̃) on BRCA Data

Thresholds Estimated at λ = 0.8 (K = 8)
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